指数函数及其展开式孰大孰小?
By 苏剑林 | 2012-03-18 | 30638位读者 | 引用在x>0时,指数函数$f(x)=e^x$与幂函数$h_n (x)=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...+\frac{x^n}{n!}$孰大孰小?
对于已经学习了微积分的朋友来说,这道题目是很简单的,甚至$f(x) > h_n (x)$可以说是“显然成立的”(因为$e^x$展开式接下来的无穷项都是正数)。但是,这道题目出在了2012年的广州一模理科数学中,就显得不那么简单了,得用初等的方法来证明它。而笔者最近养成了一个习惯,拿到一张数学试卷,不是先做选择题,而是先做最后一题。所以在参加广州一模时,先花了半个小时把最后一题(即本题)解决了。下面是我想到的三种解法。
一、数学归纳法
2012年3月28日,我19岁了。
三月是一个很美的月份,我的很多值得纪念的日子都在三月发生,还有好友们都在三月接二连三地生日,几乎让我措手不及了,呵呵。我的同桌黄金,好友家益,
还有我自己都在这个月成为十九岁的孩子了。算起来,我应该是“最年轻”的了^_^我的生日收到了许多人的祝福,这让我觉得很意外,我一直觉得,我不善于人际交往,所以不应该会有太多人关注我,但惊喜在我身上发生了。谢谢大家。
人生如梦,繁星流动,和你同路,从不相识开始心接近,默默以真挚待人......这是《朋友》的歌词,也是我们之间的真实写照。感谢上天,让我的人生之路上有你们的相伴,人生因为你们而更加精彩。愿能够与你们一起度过、奋斗过更多的日子!我们相约,我们是一辈子的朋友!
费曼积分法——积分符号内取微分(1)
By 苏剑林 | 2012-06-10 | 83016位读者 | 引用费曼积分法——积分符号内取微分(2)
By 苏剑林 | 2012-06-12 | 100478位读者 | 引用上一篇文章我对“费曼积分法”做了一个简单的介绍,并通过举例来初步展示了它的操作步骤。但是,要了解一个方法,除了知道它能够干什么之外,还必须了解它的原理和方法,这样我们才能够更好地掌握它。因此,我们需要建立“积分符号内取微分”的一般理论,为进一步的应用奠基。
一般原理
我们记
$$G(a)=\int_{m(a)}^{n(a)} f(x,a)dx$$
在这里,f(x,a)是带有参数a的关于x的函数,而积分区间是关于参数a的两个函数,这样的积分也叫变限积分,可以理解为是普通定积分的推广。我们记F(x,a)为f(x,a)的原函数,也就是说$\frac{\partial F(x,a)}{\partial x}=f(x,a)$,那么按照微积分基本定理,我们就有:
$$G(a)=F(n(a),a)-F(m(a),a)$$
昨天清晨,台风“韦森特”正式来袭我们新兴,话说凌晨三点我已经被风声吵醒了。大概7点钟起床,刚好是台风最抢镜的时候,猛烈地刮呀刮,声音有点像卡车启动的声音......
昨天一整天断电,上午还断了固定电话(农村地区是这样的啦,断电是整体的,台风刮倒了电线杆;断电话是我自己家的问题),中午的时候,固话却自动连上了,郁闷中。下午风雨都基本停下来了,妈妈和我们就出去收拾“残局”,被风刮倒的东西可真不少,尤其是我家门口的两个小棚,惨不忍睹;还有门前的一些盆栽、菜、树等,都倒下了不少。三个人爬上爬下,慢慢维修、收拾。
晚上还是没来电,也好,很久没有尝试过烛光晚餐了。九点多钟的时候,电来了,但是又是一番故障——其他人家中的电都很正常,就我这里灯泡很暗、日光灯启动不了,明显是电压不够的问题。没办法,只好硬着头皮抢修了,排除了很多原因,最后甚至从隔壁家搭电过来,发现我们家的灯还是那么暗(电压不足的问题没有解决)——这说明只有一个可能了,外部电路都没有故障,是我家的内部电路出了问题,猜想某个地方串联了一个用电器分去了电压。但是电线都镶进墙里了,这么黑根本维修不了,没办法,先睡觉了。
最近在浏览“数学研发论坛”的时候,发现了一系列不等式手册,感觉是挺宝贵的资源,就把它转载到这里来了。
当然,里边的内容难度不一,很多东西我自己也未必用得上,甚至不能弄懂,不过还是放在这里保存,并与大家分享。
原文链接:http://bbs.emath.ac.cn/thread-1549-1-1.html
文件包内容:
152个未解决的问题.pdf
HLODER 与 MINKOWSKI不等式.pdf
不等式常用证法50种.pdf
不等式基本性质.pdf
单调函数不等式.pdf
调和函数不等式.pdf
多边形与多面体不等式.pdf
反三角函数不等式.pdf
级数不等式.pdf
数论不等式.pdf
最近评论