数字是美丽的、极具魅力的,正如——
有这样的一种数,将其拆开成为两个数,这两个数的和的平方等于原数。例如:
$$\begin{aligned}2025=&(20+25)^2\\88209=&(88+209)^2\\152344237969=&(152344+237969)^2\\ &...\end{aligned}$$

下面是关于这类数的一些研究:

1、这类数的实质是:$(A+B)^2=10^nA+B$,而对于$(A+B)^2=kA+B$,有
$A=k/2-B\pm\sqrt{{k^2}/{4}-(k-1)B}$
因此,一般地,对于一个适合的B,可以找到两个对应的A。

2、对于$(A+B)^2=10^{2n}A+B$的情况,A,B可以为
$B={10^{2n}}/4,A={10^{2n}}/4\pm{10^n}/2$

3、一般性解法:

对于$(A+B)^2=10^nA+B$,有$(A+B)(A+B-1)=(10^n-1)A$。对此,我们知道,要找出两个相邻的自然数之积为$(10^n-1)$的倍数。设想令$10^n-1=X\cdot Y,A=M\cdot N$,并且使$M\cdot X=N\cdot Y+-1$。

$X,Y$可以由$10^n-1$来预先确定,通过找到适合的N来确定M。于是,在$M\cdot X=N\cdot Y+1$中,A=MN,A+B=NY+1;

在$M\cdot X=N\cdot Y-1$中,$A=MN,A+B=NY$。在此过程中,会用到剩余定理、因式分解等。

例如:

3.1 寻找两位数的A、B
即$(A+B)(A+B-1)=99A$。
令$99=9\cdot 11$(不能分成$3\cdot 33,1\cdot 99$,想想为什么?)。在$M\cdot X=N\cdot Y-1$的形式中,

我们有$(11N-1)\mod 9=0$

于是N为5+9p的形式的数,取N=5,得到M=6,A=30,B=25。同时对于B=25,另一个A为20。即
$$\begin{aligned}(30+25)^2=&3025\\
(20+25)^2=&2025\end{aligned}$$

3.2 寻找六位数的A、B
即$(A+B)(A+B-1)=(10^6-1)A$
由于$10^6-1=3^3\cdot 7\cdot 11\cdot 13\cdot 37$,我们可以令$10^6-1=143\cdot 6993$(不唯一)。在$M\cdot X=N\cdot Y-1$的形式中,

我们有$(6993N-1)\mod 143=0$

可以求出N为51+143p形式的数,取N=51,则M=2494,A=127194,B=229449。同时对于B=229449,另一个A

为413908。即
$$\begin{aligned}(127194+229449)^2=&127194229449\\
(413908+229449)^2=&413908229449\end{aligned}$$

到了这里,问题已基本上求解完成了,沿着这个思路,我们可以找到更多的这样的平方数。而且一般地,这种平方数的个数是无穷的。

转载到请包括本文地址:https://kexue.fm/archives/7

如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。

如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!