23 Apr

如何减少采样步数同时保证生成质量,是扩散模型应用层面的一个关键问题。其中,《生成扩散模型漫谈(四):DDIM = 高观点DDPM》介绍的DDIM可谓是加速采样的第一次尝试。后来,《生成扩散模型漫谈(五):一般框架之SDE篇》《生成扩散模型漫谈(五):一般框架之ODE篇》等所介绍的工作将扩散模型与SDE、ODE联系了起来,于是相应的数值积分技术也被直接用于扩散模型的采样加速,其中又以相对简单的ODE加速技术最为丰富,我们在《生成扩散模型漫谈(二十一):中值定理加速ODE采样》也介绍过一例。

这篇文章我们介绍另一个特别简单有效的加速技巧——Skip Tuning,出自论文《The Surprising Effectiveness of Skip-Tuning in Diffusion Sampling》,准确来说它是配合已有的加速技巧使用,来一步提高采样质量,这就意味着在保持相同采样质量的情况下,它可以进一步压缩采样步数,从而实现加速。

点击阅读全文...

17 Apr

上一篇文章《生成扩散模型漫谈(二十二):信噪比与大图生成(上)》中,我们介绍了通过对齐低分辨率的信噪比来改进noise schedule,从而改善直接在像素空间训练的高分辨率图像生成(大图生成)的扩散模型效果。而这篇文章的主角同样是信噪比和大图生成,但做到了更加让人惊叹的事情——直接将训练好低分辨率图像的扩散模型用于高分辨率图像生成,不用额外的训练,并且效果和推理成本都媲美直接训练的大图模型!

这个工作出自最近的论文《Upsample Guidance: Scale Up Diffusion Models without Training》,它巧妙地将低分辨率模型上采样作为引导信号,并结合了CNN对纹理细节的平移不变性,成功实现了免训练高分辨率图像生成。

思想探讨

我们知道,扩散模型的训练目标是去噪(Denoise,也是DDPM的第一个D)。按我们的直觉,去噪这个任务应该是分辨率无关的,换句话说,理想情况下低分辨率图像训练的去噪模型应该也能用于高分辨率图像去噪,从而低分辨率的扩散模型应该也能直接用于高分辨率图像生成。

点击阅读全文...

8 Apr

盘点主流的图像扩散模型作品,我们会发现一个特点:当前多数做高分辨率图像生成(下面简称“大图生成”)的工作,都是先通过Encoder变换到Latent空间进行的(即LDM,Latent Diffusion Model),直接在原始Pixel空间训练的扩散模型,大多数分辨率都不超过64*64,而恰好,LDM通过AutoEncoder变换后的Latent,大小通常也不超过64*64。这就自然引出了一系列问题:扩散模型是不是对于高分辨率生成存在固有困难?能否在Pixel空间直接生成高分辨率图像?

论文《Simple diffusion: End-to-end diffusion for high resolution images》尝试回答了这个问题,它通过“信噪比”分析了大图生成的困难,并以此来优化noise schdule,同时提出只需在最低分辨率feature上对架构进行scale up、多尺度Loss等技巧来保证训练效率和效果,这些改动使得原论文成功在Pixel空间上训练了分辨率高达1024*1024的图像扩散模型。

点击阅读全文...

21 Feb

“闭门造车”之多模态思路浅谈(一):无损输入

这篇文章分享一下笔者关于多模态模型架构的一些闭门造车的想法,或者说一些猜测。

最近Google的Gemini 1.5和OpenAI的Sora再次点燃了不少人对多模态的热情,只言片语的技术报告也引起了大家对其背后模型架构的热烈猜测。不过,本文并非是为了凑这个热闹才发出来的,事实上其中的一些思考由来已久,最近才勉强捋顺了一下,遂想写出来跟大家交流一波,刚好碰上了两者的发布。

事先声明,“闭门造车”一词并非自谦,笔者的大模型实践本就“乏善可陈”,而多模态实践更是几乎“一片空白”,本文确实只是根据以往文本生成和图像生成的一些经验所做的“主观臆测”。

问题背景

首先简化一下问题,本文所讨论的多模态,主要指图文混合的双模态,即输入和输出都可以是图文。可能有不少读者的第一感觉是:多模态模型难道不也是烧钱堆显卡,Transformer“一把梭”,最终“大力出奇迹”吗?

点击阅读全文...

31 Jan

幂等生成网络IGN:试图将判别和生成合二为一的GAN

前段时间,一个名为“幂等生成网络(Idempotent Generative Network,IGN)”的生成模型引起了一定的关注。它自称是一种独立于已有的VAE、GAN、flow、Diffusion之外的新型生成模型,并且具有单步采样的特点。也许是大家苦于当前主流的扩散模型的多步采样生成过程久矣,因此任何声称可以实现单步采样的“风吹草动”都很容易吸引人们的关注。此外,IGN名称中的“幂等”一词也增加了它的神秘感,进一步扩大了人们的期待,也成功引起了笔者的兴趣,只不过之前一直有别的事情要忙,所以没来得及认真阅读模型细节。

最近闲了一点,想起来还有个IGN没读,于是重新把论文翻了出来,但阅读之后却颇感困惑:这哪里是个新模型,不就是个GAN的变种吗?跟常规GAN不同的是,它将生成器和判别器合二为一了。那这个“合二为一”是不是有什么特别的好处,比如训练更稳定?个人又感觉没有。下面将分享笔者从GAN角度理解IGN的过程和疑问。

生成对抗

关于GAN(Generative Adversarial Network,生成对抗网络),笔者前几年系统地学习过一段时间(查看GAN标签可以查看到相关文章),但近几年没有持续地关注了,因此这里先对GAN做个简单的回顾,也方便后续章节中我们对比GAN与IGN之间的异同。

点击阅读全文...

7 Dec

在生成扩散模型的发展史上,DDIM和同期Song Yang的扩散SDE都称得上是里程碑式的工作,因为它们建立起了扩散模型与随机微分方程(SDE)、常微分方程(ODE)这两个数学领域的紧密联系,从而允许我们可以利用SDE、ODE已有的各种数学工具来对分析、求解和拓展扩散模型,比如后续大量的加速采样工作都以此为基础,可以说这打开了生成扩散模型的一个全新视角。

本文我们聚焦于ODE。在本系列的(六)(十二)(十四)(十五)(十七)等博客中,我们已经推导过ODE与扩散模型的联系,本文则对扩散ODE的采样加速做简单介绍,并重点介绍一种巧妙地利用“中值定理”思想的新颖采样加速方案“AMED”。

欧拉方法

正如前面所说,我们已经有多篇文章推导过扩散模型与ODE的联系,所以这里不重复介绍,而是直接将扩散ODE的采样定义为如下ODE的求解:
\begin{equation}\frac{d\boldsymbol{x}_t}{dt} = \boldsymbol{v}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t)\label{eq:dm-ode}\end{equation}

点击阅读全文...

31 Oct

简单得令人尴尬的FSQ:“四舍五入”超越了VQ-VAE

正如“XXX is all you need”一样,有不少论文都以“简单得令人尴尬”命名(An Embarrassingly Simple XXX),但在笔者看来,这些论文大多数都是噱头多于实力。不过,笔者最近阅读到的一篇论文,真的让人不由得发出“简单得令人尴尬”的感叹~

论文的标题是《Finite Scalar Quantization: VQ-VAE Made Simple》,顾名思义,这是一篇旨在用FSQ(Finite Scalar Quantization)简化VQ-VAE的工作。随着生成模型、多模态LLM的逐渐流行,VQ-VAE及其后续工作也作为“图像的Tokenizer”而“水涨船高”。然而,VQ-VAE的训练本身也存在一些问题,而FSQ这篇论文则声称通过更简单的“四舍五入”就可以达到同样的目的,并且有着效果更好、收敛更快、训练更稳的优点。

FSQ真有这么神奇?接下来我们一起学习一下。

VQ

首先,我们来了解一下“VQ”。VQ全称是“Vector Quantize”,可以翻译为“向量量子化”或者“向量量化”,是指将无限、连续的编码向量映射为有限、离散的整数数字的一种技术。如果我们将VQ应用在自编码器的中间层,那么可以在压缩输入大小的同时,让编码结果成为一个离散的整数序列。

点击阅读全文...

14 Jul

当生成模型肆虐:互联网将有“疯牛病”之忧?

众所周知,不管是文本还是视觉领域,各种生成模型正在以无法阻挡的势头“肆虐”互联网。虽然大家都明白,实现真正的通用人工智能(AGI)还有很长的路要走,但这并不妨碍人们越来越频繁地利用生成模型来创作和分享内容。君不见,很多网络文章已经配上了Stable Diffusion模型生成的插图;君不见,很多新闻风格已经越来越显现出ChatGPT的影子。看似无害的这种趋势,正悄然引发了一个问题:我们是否应该对互联网上充斥的生成模型数据保持警惕?

近期发表的论文《Self-Consuming Generative Models Go MAD》揭示了一种令人担忧的可能性,那就是生成模型正在互联网上的无节制扩张,可能会导致一场数字版的“疯牛病”疫情。本文一起学习这篇论文,探讨其可能带来的影响。

点击阅读全文...