齐次多项式不等式的机器证明(差分代换)
By 苏剑林 | 2014-07-06 | 40421位读者 | 引用在高中阶段,笔者也像很多学生一样参加过数学竞赛,而在准备数学竞赛的过程中,也做过一些竞赛题,其中当然少不了不等式题目。当时,面对各种各样的不等式证明题,我总是非常茫然,因为看到答案之后,总感觉证明的构造非常神奇,但是每当我自己独立去做时,却总想不出来。于是后来就萌生了“有没有办法可以通用地证明这些不等式?”的想法。为了实现这个目的,当时就想出了本文的技巧——通过牺牲计算的简便性来换取证明的有效性。后来,我虽然没有走上数学竞赛这条路,但这个方法还是保留了下来,近日,在和数学研发论坛的朋友们讨论不等式问题时,重新拾起了这个技巧。
此前,在本博客的文章《对称多项式不等式的“物理证明”》中,已经谈到了这个技巧,只是限制于当时的知识储备,了解并不深入。而在本文中,则进行拓展了。这个技巧在当时是我自己在证明中独立发现的,而现在在网上查找时发现,前辈们(杨路、姚勇、杨学枝等)早已研究过这个技巧,称之为“差分代换”,并且已经探究过它在机器证明中的作用。该技巧可以很一般化地用于齐次/非其次不等式的证明,限于篇幅,本文只谈齐次多项式不等式,特别地,是对称齐次多项式不等式,并且发现某些可以简化之处。
不确定性原理的矩阵形式
By 苏剑林 | 2014-01-05 | 42020位读者 | 引用作为量子理论的一个重要定理,不确定性原理总是伴随着物理意义出现的,但是从数学的角度来讲,把不确定性原理的数学形式抽象出来,有助于我们发现更多领域的“不确定性原理”。
本文中,我们将谈及不确定性原理的n维矩阵形式。首先需要解释给大家的是,不确定性原理其实是关于“两个厄密算符与一个单位向量之间的一条不等式”。在量子力学中,厄密算符对应着无穷维的厄密矩阵;而所谓厄密矩阵,就是一个矩阵同时取共轭和转置之后,等于它自身。但是本文讨论一个更简单的情况,那就是n维实矩阵,n维实矩阵中的厄密矩阵就是我们所说的实对称矩阵了。
设$\boldsymbol{x}$是一个$n$维单位向量,即$|\boldsymbol{x}|=1$,而$\boldsymbol{A}$和$\boldsymbol{B}$是n阶实对称矩阵。在量子力学中,$\boldsymbol{x}$就是波函数,但是在这里,它只不过是一个单位实向量;并记$\boldsymbol{I}$是$n$阶单位阵。
考虑
$$\bar{A}=\boldsymbol{x}^{T}\boldsymbol{A}\boldsymbol{x},\bar{B}=\boldsymbol{x}^{T}\boldsymbol{B}\boldsymbol{x}$$
从这些记号可以看出,这些量对应着可观测量的期望值。当然,如果不懂量子力学,可以只看上面的矩阵形式。
阿达马不等式
设有$n$阶实矩阵$\boldsymbol{A}=(a_{ij})_{n\times n}$,那么它的行列式满足阿达马(Hadamard)不等式
$$\begin{equation}
\left(\det \boldsymbol{A}\right)^2 \leq \prod\limits_{i=1}^{n}\left(a_{1i}^2+a_{2i}^2+\dots+a_{ni}^2\right)
\end{equation}$$
这是阿达马在1893年首先发表的。根据体积就是行列式的说法,上述不等式具有相当明显的几何意义。当$n=2$时,它就是说平行四边形的面积不大于两边长的乘积;当$n=3$时,它就是说平行六面体的体积不大于三条棱长的乘积;高维可以类比。这些结论在几何中几乎都是“显然成立”的东西。因此很难理解为什么这个不等式在1893年才被发现。当然,代数不会接受如此笼统的说法,它需要严格的证明。
均值不等式的两个巧妙证明
By 苏剑林 | 2012-09-26 | 53876位读者 | 引用记得几年前,BoJone提供过一个证明均值不等式(代数—几何平均不等式)的方法,但是其中的证明有点长,有点让人眼花缭乱的感觉(虽然里边的思想还是挺简单的)。昨天在上《数学分析》课程的时候,老师讲到了这个不等式,也讲了他的证明,用的是数学归纳法,感觉还是没有那种简洁美和巧妙美。但这让我回想起了之前我研究过的两种巧妙证明方法,可是在昨天划了一整天,都没有把这两种方法回忆起来。直到今天才回想起来,所以就放在这里与大家分享,同时也作备忘之用。
对于若干个非负数$x_i$,我们有
$$\frac{x_1+x_2+...+x_n}{n} \geq \sqrt[n]{x_1 x_2 ... x_n}$$
记为$A_n \geq G_n$
证明1:数学归纳法
这个方法不算简单,但是非常巧妙,它从n递推到n+1的过程让人拍案叫绝。用数学归纳法证明詹森不等式也是同样的递推思路,而均值不等式不过是詹森不等式的一个特例而已。
假设$A_n \geq G_n$成立,要证$A_{n+1} \geq G_{n+1}$。我们有
$$\begin{aligned}&2n A_{n+1}=(n+1)A_{n+1}+(n-1)A_{n+1} \\
=&[x_1 + x_2 +...+x_n]+[x_{n+1}+(n-1)A_{n+1}] \\
\geq &nG_n+n(x_{n+1}\cdot A_{n+1}^{n-1})^{\frac{1}{n}} \\
\geq &2n(G_{n+1}^{n+1}\cdot A_{n+1}^{n-1})^{\frac{1}{2n}}\end{aligned}$$
对称多项式不等式的“物理证明”
By 苏剑林 | 2011-08-13 | 36724位读者 | 引用本文将再次谈到对称这个话题,不过这一次的对象不是“等式”,而是“不等式”。
在数学研究中,我们经常会遇到各种各样的函数式子,其中有相当一部分是“对称”的。什么是对称的函数呢?对称有很多种说法,但是针对于多元对称式,我们的定义为满足$f(x_1,x_2,...,x_n)=f(y_1,y_2,...,y_n)$的函数,其中$(y_1,y_2,...,y_n)$是$(x_1,x_2,...,x_n)$的任意一个排列。通俗来讲,就是将式子中任意两个未知数交换位置,得到的式子还是和原来的式子一样。例如$\sin x+\sin y$,把$x,y$交换位置后得到$\sin y+\sin x$,还是和原来的一样;再如$xy+yz+zx$,将y,z互换后可以得到$xz+zy+yx$,结果还是和原式一样;等等。有些对称的函数是一个n次的多项式,那么就叫它为n次对称多项式,上边的例子$xz+zy+yx$就是一个三元二次对称多项式。
[更正]一道经典不等式的美妙证明
By 苏剑林 | 2011-07-20 | 23704位读者 | 引用在数学竞赛中,很多题目都专门设置了一种技巧,这种技巧在很大程度上是不怎么理所当然的,换句话说,难以“顺理成章”地想下去,或者是说方法不成系统的,这也是我有点不喜欢数学竞赛题目的一个原因。当然,另一方面,个人认为数学竞赛比物理竞赛更能锻炼一个人的思维能力,尤其是在抽象思维以及几何想象能力等,因此做一些这样的题目也会有好处的。
下面就是一道很经典的竞赛题,它是在韩国举行的第42届IMO中的题目:
设a,b,c都是正实数,求证:
$\frac{a}{\sqrt{a^2+8bc}}+ \frac{b}{\sqrt{b^2+8ac}} + \frac{c}{\sqrt{c^2+8ab}} \geq 1$
最近评论