在bert4keras中使用混合精度和XLA加速训练
By 苏剑林 | 2022-04-28 | 27671位读者 | 引用之前笔者一直都是聚焦于模型的构思和实现,鲜有关注模型的训练加速,像混合精度和XLA这些技术,虽然也有听过,但没真正去实践过。这两天折腾了一番,成功在bert4keras中使用了混合精度和XLA来加速训练,在此做个简单的总结,供大家参考。
本文的多数经验结论并不只限于bert4keras中使用,之所以在标题中强调bert4keras,只不过bert4keras中的模型实现相对较为规整,因此启动这些加速技巧所要做的修改相对更少。
实验环境
本文的实验显卡为3090,使用的docker镜像为nvcr.io/nvidia/tensorflow:21.09-tf1-py3,其中自带的tensorflow版本为1.15.5。另外,实验所用的bert4keras版本为0.11.3。其他环境也可以参考着弄,要注意有折腾精神,不要指望着无脑调用。
顺便提一下,3090、A100等卡只能用cuda11,而tensorflow官网的1.15版本是不支持cuda11的,如果还想用tensorflow 1.x,那么只能用nvidia亲自维护的nvidia-tensorflow,或者用其构建的docker镜像。用nvidia而不是google维护的tensorflow,除了能让你在最新的显卡用上1.x版本外,还有nvidia专门做的一些额外优化,具体文档可以参考这里。
为什么Pre Norm的效果不如Post Norm?
By 苏剑林 | 2022-03-29 | 100141位读者 | 引用Pre Norm与Post Norm之间的对比是一个“老生常谈”的话题了,本博客就多次讨论过这个问题,比如文章《浅谈Transformer的初始化、参数化与标准化》、《模型优化漫谈:BERT的初始标准差为什么是0.02?》等。目前比较明确的结论是:同一设置之下,Pre Norm结构往往更容易训练,但最终效果通常不如Post Norm。Pre Norm更容易训练好理解,因为它的恒等路径更突出,但为什么它效果反而没那么好呢?
笔者之前也一直没有好的答案,直到前些时间在知乎上看到 @唐翔昊 的一个回复后才“恍然大悟”,原来这个问题竟然有一个非常直观的理解!本文让我们一起来学习一下。
多标签“Softmax+交叉熵”的软标签版本
By 苏剑林 | 2022-05-07 | 51313位读者 | 引用(注:本文的相关内容已整理成论文《ZLPR: A Novel Loss for Multi-label Classification》,如需引用可以直接引用英文论文,谢谢。)
在《将“Softmax+交叉熵”推广到多标签分类问题》中,我们提出了一个用于多标签分类的损失函数:
\begin{equation}\log \left(1 + \sum\limits_{i\in\Omega_{neg}} e^{s_i}\right) + \log \left(1 + \sum\limits_{j\in\Omega_{pos}} e^{-s_j}\right)\label{eq:original}\end{equation}
这个损失函数有着单标签分类中“Softmax+交叉熵”的优点,即便在正负类不平衡的依然能够有效工作。但从这个损失函数的形式我们可以看到,它只适用于“硬标签”,这就意味着label smoothing、mixup等技巧就没法用了。本文则尝试解决这个问题,提出上述损失函数的一个软标签版本。
巧妙联系
多标签分类的经典方案就是转化为多个二分类问题,即每个类别用sigmoid函数$\sigma(x)=1/(1+e^{-x})$激活,然后各自用二分类交叉熵损失。当正负类别极其不平衡时,这种做法的表现通常会比较糟糕,而相比之下损失$\eqref{eq:original}$通常是一个更优的选择。
熵不变性Softmax的一个快速推导
By 苏剑林 | 2022-04-11 | 19585位读者 | 引用在文章《从熵不变性看Attention的Scale操作》中,我们推导了一版具有熵不变性质的注意力机制:
\begin{equation}Attention(Q,K,V) = softmax\left(\frac{\kappa \log n}{d}QK^{\top}\right)V\label{eq:a}\end{equation}
可以观察到,它主要是往Softmax里边引入了长度相关的缩放因子$\log n$来实现的。原来的推导比较繁琐,并且做了较多的假设,不利于直观理解,本文为其补充一个相对简明快速的推导。
推导过程
我们可以抛开注意力机制的背景,直接设有$s_1,s_2,\cdots,s_n\in\mathbb{R}$,定义
$$p_i = \frac{e^{\lambda s_i}}{\sum\limits_{i=1}^n e^{\lambda s_i}}$$
GlobalPointer下的“KL散度”应该是怎样的?
By 苏剑林 | 2022-04-15 | 26791位读者 | 引用最近有读者提到想测试一下GlobalPointer与R-Drop结合的效果,但不知道GlobalPointer下的KL散度该怎么算。像R-Drop或者虚拟对抗训练这些正则化手段,里边都需要算概率分布的KL散度,但GlobalPointer的预测结果并非一个概率分布,因此无法直接进行计算。
经过一番尝试,笔者给出了一个可用的形式,并通过简单实验验证了它的可行性,遂在此介绍笔者的分析过程。
对称散度
KL散度是关于两个概率分布的函数,它是不对称的,即$KL(p\Vert q)$通常不等于$KL(q\Vert p)$,在实际应用中,我们通常使用对称化的KL散度:
\begin{equation}D(p,q) = KL(p\Vert q) + KL(q\Vert p)\end{equation}
你的语言模型有没有“无法预测的词”?
By 苏剑林 | 2022-04-20 | 21587位读者 | 引用众所周知,分类模型通常都是先得到编码向量,然后接一个Dense层预测每个类别的概率,而预测时则是输出概率最大的类别。但大家是否想过这样一种可能:训练好的分类模型可能存在“无法预测的类别”,即不管输入是什么,都不可能预测出某个类别$k$,类别$k$永远不可能成为概率最大的那个。
当然,这种情况一般只出现在类别数远远超过编码向量维度的场景,常规的分类问题很少这么极端的。然而,我们知道语言模型本质上也是一个分类模型,它的类别数也就是词表的总大小,往往是远超过向量维度的,那么我们的语言模型是否有“无法预测的词”?(只考虑Greedy解码)
是否存在
ACL2022的论文《Low-Rank Softmax Can Have Unargmaxable Classes in Theory but Rarely in Practice》首先探究了这个问题,正如其标题所言,答案是“理论上存在但实际出现概率很小”。
logsumexp运算的几个不等式
By 苏剑林 | 2022-05-10 | 23625位读者 | 引用$\text{logsumexp}$是机器学习经常遇到的运算,尤其是交叉熵的相关实现和推导中都会经常出现,同时它还是$\max$的光滑近似(参考《寻求一个光滑的最大值函数》)。设$x=(x_1,x_2,\cdots,x_n)$,$\text{logsumexp}$定义为
\begin{equation}\text{logsumexp}(x)=\log\sum_{i=1}^n e^{x_i}\end{equation}
本文来介绍$\text{logsumexp}$的几个在理论推导中可能用得到的不等式。
基本界
记$x_{\max} = \max(x_1,x_2,\cdots,x_n)$,那么显然有
\begin{equation}e^{x_{\max}} < \sum_{i=1}^n e^{x_i} \leq \sum_{i=1}^n e^{x_{\max}} = ne^{x_{\max}}\end{equation}
各端取对数即得
\begin{equation}x_{\max} < \text{logsumexp}(x) \leq x_{\max} + \log n\end{equation}
生成扩散模型漫谈(一):DDPM = 拆楼 + 建楼
By 苏剑林 | 2022-06-13 | 416942位读者 | 引用说到生成模型,VAE、GAN可谓是“如雷贯耳”,本站也有过多次分享。此外,还有一些比较小众的选择,如flow模型、VQ-VAE等,也颇有人气,尤其是VQ-VAE及其变体VQ-GAN,近期已经逐渐发展到“图像的Tokenizer”的地位,用来直接调用NLP的各种预训练方法。除了这些之外,还有一个本来更小众的选择——扩散模型(Diffusion Models)——正在生成模型领域“异军突起”,当前最先进的两个文本生成图像——OpenAI的DALL·E 2和Google的Imagen,都是基于扩散模型来完成的。
从本文开始,我们开一个新坑,逐渐介绍一下近两年关于生成扩散模型的一些进展。据说生成扩散模型以数学复杂闻名,似乎比VAE、GAN要难理解得多,是否真的如此?扩散模型真的做不到一个“大白话”的理解?让我们拭目以待。
最近评论