23 Oct

科学空间:2010年11月重要天象

2009leo-songjian

2009leo-songjian

十一月夜空的主角,将是几个颇具看点的流星雨,南、北金牛以及狮子座流星雨的极大非常值得期待。当然,这段时间观测条件最好的行星还是木星,而到了月底,水星和金星的观测条件也将逐渐转好。其中水星是昏星,日落后在西方的低空中隐约可见,而金星作为晨星将在日出前出现在东方天空中,亮度可达-4.6等。

点击阅读全文...

22 Oct

未来的天地枢纽——太空天梯

开发太空天梯

开发太空天梯

漫话
BoJone认为,科学的意义并非在于无休止地计算,而是利用有限的科学理论来解释尽可能多的自然、生活现象。正因如此,科学家们追求和谐、简洁、优美的科学理论。科学就是想方设法地把未知变成已知,并在此基础上进一步发展。

随着媒体技术的发展,我们接触信息的渠道越来越多。每每我们从互联网或报纸上看到一则科学新闻时,我们几乎都会为之兴奋。但是,外行看热闹,内行看门道。对于真正热爱科学的朋友来说,也许会更加感兴趣新闻内容的来由。也就是说,我们希望进一步了解结论是怎样得出来的——哪怕只是在很浅的层面上认识。

点击阅读全文...

24 Oct

扬帆——在宇宙的海洋中航行

以下内容来源于《天文爱好者》杂志2010年10期(作者庞统,责任编辑李良)。
作为消息通告和交流学习所用,请勿用于商业或其他非法用途
ikaros图片版权:ISAS / JAXA;其余来自互联网搜索得到。

2010年5月21曰,日本用H-2A火箭成功发射了耗资15亿曰元(合1600万美元)的“伊卡洛斯”太阳帆,以检验它是否能够利用太阳能实现加速飞行,从而拉开了研制和发射太阳帆式新型推进航天器高潮的序幕。2010年9月和年底,美国还将先后发射纳帆-D2和光帆-1太阳帆。

ikaros

ikaros

点击阅读全文...

30 Oct

11月03日美国“发现号”航天飞机“绝唱”

美“发现”号航天飞机将于11月踏上绝唱之旅

美“发现”号航天飞机将于11月踏上绝唱之旅

美国航天局29日说,由于“发现”号航天飞机右侧轨道操控系统的加压部分发现两处氦气泄漏,其发射日期将被推迟一天。

“发现”号原计划美国东部时间11月1日发射升空。根据美国航天局最新安排,其发射将推迟到11月2日16时17分(北京时间3日4时17分)。这将是“发现”号计划中的绝唱之旅,也是美国航天飞机今年最后一次飞行任务。

点击阅读全文...

31 Oct

当酸溶液遇到了更多的水时...

BoJone:阅读本文需要有电离平衡的相关知识作为基础。

这两个星期我们都在学习高中的人教版《化学选修4》中的电离平衡相关知识。虽然我们是“重点班”,可是进展仍然相当地慢。关于电离平衡,有同学向我提出过一个问题:

酸溶液继续加水后,为什么pH会趋于7?(常温常压)

显然,这个问题是很好理解的,因为加水后$H^+$被稀释了。然后我更感兴趣是由此引申出的一个问题:

(强)酸溶液继续加水后,平衡向哪边移动?

点击阅读全文...

6 Nov

这个星期对微分方程的认识

这个星期研究了两道微分方程问题:“导弹跟踪”以及“太阳炉”问题。从中我加深了对微分方程的理解,也熟悉了微分方程的相关运算。仅此记录,权当抛砖引玉。

一、微分方程的本质

很多读者都知道,自从牛顿和莱布尼兹发明微积分之后,微积分就迅速地渗透到了几乎所有的学科,后来发展出许多出色的分支,如变分、微分方程等。众所周知,微分方程是解决很多重要问题的工具。不知道各位读者对微分及微分方程的认识如何?其实对于常微分方程而言,它的本质和我们已经学习过的代数方程一样,只不过相互之间的对应运算关系除了常规的加减乘除幂等之外,还多了两个相互关系:微分和积分。例如对于一阶微分方程$\dot{y}=f(x,y)$,也许大家都认为它是一个二元方程,其实不然,这是一个“四个未知数、三道方程”所组成的方程组,我们可以将它写成

$$dy=f(x,y)dx,y=\int dy,x=\int dx$$

点击阅读全文...

7 Nov

为什么是抛物线?——聚光面研究

很多读者都知道,反射望远镜、射电望远镜、太阳能集热器等都有一个抛物状的面,它们都是利用了抛物面能将平行射入的光汇聚到一个点(焦点)上的性质。如果问为什么抛物面具有此性质,相信很多高中生都可以利用抛物线的相关知识来证明。但是,如果反过来问:为什么具有此性质的曲面是抛物面?相信会难倒一部分读者。我们来尝试寻找这一曲线(由于对称的原因,这个曲面可以看作由曲线旋转而成,因此我们可以研究曲线)。

世上最大单孔径射电望远镜

世上最大单孔径射电望远镜

点击阅读全文...

13 Nov

意犹未尽——继续光学曲线

《为什么是抛物线?——聚光面研究》这篇文章里头,我们从光学性质出发,推导出了符合该光学性质的曲线为抛物线,同时我们也不禁感到了向量分析的美妙。也许有的读者会意犹未尽:圆锥曲线有三种,文章只介绍了一种。那好,在这篇文章里,我们就从另外两个光学性质出发,推导出符合这两个光学性质的曲线(椭圆、双曲线)。

(注:在下面的描述中,橙色加粗向量表示光线,曲线表示反射面。)

一、从一个点发出的光线经过曲线(面)反射后汇集到另外一个点上。

椭圆的光学性质

椭圆的光学性质

点击阅读全文...