梯度视角下的LoRA:简介、分析、猜测及推广
By 苏剑林 | 2023-04-17 | 82439位读者 | 引用随着ChatGPT及其平替的火热,各种参数高效(Parameter-Efficient)的微调方法也“水涨船高”,其中最流行的方案之一就是本文的主角LoRA了,它出自论文《LoRA: Low-Rank Adaptation of Large Language Models》。LoRA方法上比较简单直接,而且也有不少现成实现,不管是理解还是使用都很容易上手,所以本身也没太多值得细写的地方了。
然而,直接实现LoRA需要修改网络结构,这略微麻烦了些,同时LoRA给笔者的感觉是很像之前的优化器AdaFactor,所以笔者的问题是:能否从优化器角度来分析和实现LoRA呢?本文就围绕此主题展开讨论。
方法简介
以往的一些结果(比如《Exploring Aniversal Intrinsic Task Subspace via Prompt Tuning》)显示,尽管预训练模型的参数量很大,但每个下游任务对应的本征维度(Intrinsic Dimension)并不大,换句话说,理论上我们可以微调非常小的参数量,就能在下游任务取得不错的效果。
LoRA借鉴了上述结果,提出对于预训练的参数矩阵$W_0\in\mathbb{R}^{n\times m}$,我们不去直接微调$W_0$,而是对增量做低秩分解假设:
\begin{equation}W = W_0 + A B,\qquad A\in\mathbb{R}^{n\times r},B\in\mathbb{R}^{r\times m}\end{equation}
生成扩散模型漫谈(十六):W距离 ≤ 得分匹配
By 苏剑林 | 2023-02-14 | 26454位读者 | 引用Wasserstein距离(下面简称“W距离”),是基于最优传输思想来度量两个概率分布差异程度的距离函数,笔者之前在《从Wasserstein距离、对偶理论到WGAN》等博文中也做过介绍。对于很多读者来说,第一次听说W距离,是因为2017年出世的WGAN,它开创了从最优传输视角来理解GAN的新分支,也提高了最优传输理论在机器学习中的地位。很长一段时间以来,GAN都是生成模型领域的“主力军”,直到最近这两年扩散模型异军突起,GAN的风头才有所下降,但其本身仍不失为一个强大的生成模型。
从形式上来看,扩散模型和GAN差异很明显,所以其研究一直都相对独立。不过,去年底的一篇论文《Score-based Generative Modeling Secretly Minimizes the Wasserstein Distance》打破了这个隔阂:它证明了扩散模型的得分匹配损失可以写成W距离的上界形式。这意味着在某种程度上,最小化扩散模型的损失函数,实则跟WGAN一样,都是在最小化两个分布的W距离。
生成扩散模型漫谈(十七):构建ODE的一般步骤(下)
By 苏剑林 | 2023-02-23 | 93057位读者 | 引用历史总是惊人地相似。当初笔者在写《生成扩散模型漫谈(十四):构建ODE的一般步骤(上)》(当时还没有“上”这个后缀)时,以为自己已经搞清楚了构建ODE式扩散的一般步骤,结果读者 @gaohuazuo 就给出了一个新的直观有效的方案,这直接导致了后续《生成扩散模型漫谈(十四):构建ODE的一般步骤(中)》(当时后缀是“下”)。而当笔者以为事情已经终结时,却发现ICLR2023的论文《Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow》又给出了一个构建ODE式扩散模型的新方案,其简洁、直观的程度简直前所未有,令人拍案叫绝。所以笔者只好默默将前一篇的后缀改为“中”,然后写了这个“下”篇来分享这一新的结果。
直观结果
我们知道,扩散模型是一个$\boldsymbol{x}_T\to \boldsymbol{x}_0$的演化过程,而ODE式扩散模型则指定演化过程按照如下ODE进行:
\begin{equation}\frac{d\boldsymbol{x}_t}{dt}=\boldsymbol{f}_t(\boldsymbol{x}_t)\label{eq:ode}\end{equation}
而所谓构建ODE式扩散模型,就是要设计一个函数$\boldsymbol{f}_t(\boldsymbol{x}_t)$,使其对应的演化轨迹构成给定分布$p_T(\boldsymbol{x}_T)$、$p_0(\boldsymbol{x}_0)$之间的一个变换。说白了,我们希望从$p_T(\boldsymbol{x}_T)$中随机采样一个$\boldsymbol{x}_T$,然后按照上述ODE向后演化得到的$\boldsymbol{x}_0$是$\sim p_0(\boldsymbol{x}_0)$的。
如何度量数据的稀疏程度?
By 苏剑林 | 2023-05-05 | 37074位读者 | 引用在机器学习中,我们经常会谈到稀疏性,比如我们经常说注意力矩阵通常是很稀疏的。然而,不知道大家发现没有,我们似乎从没有给出过度量稀疏程度的标准方法。也就是说,以往我们关于稀疏性的讨论,仅仅是直观层面的感觉,并没有过定量分析。那么问题来了,稀疏性的度量有标准方法了吗?
经过搜索,笔者发现确实是有一些可用的指标,比如$l_1/l_2$、熵等,但由于关注视角的不同,在稀疏性度量方面并没有标准答案。本文简单记录一下笔者的结果。
基本结果
狭义上来讲,“稀疏”就是指数据中有大量的零,所以最简单的稀疏性指标就是统计零的比例。但如果仅仅是这样的话,注意力矩阵就谈不上稀疏了,因为softmax出来的结果一定是正数。所以,有必要推广稀疏的概念。一个朴素的想法是统计绝对值不超过$\epsilon$的元素比例,但这个$\epsilon$怎么确定呢?
生成扩散模型漫谈(二十):从ReFlow到WGAN-GP
By 苏剑林 | 2023-06-28 | 26853位读者 | 引用上一篇文章《生成扩散模型漫谈(十九):作为扩散ODE的GAN》中,我们介绍了如何将GAN理解为在另一个时间维度上的扩散ODE,简而言之,GAN实际上就是将扩散模型中样本的运动转化为生成器参数的运动!然而,该文章的推导过程依赖于Wasserstein梯度流等相对复杂和独立的内容,没法很好地跟扩散系列前面的文章连接起来,技术上显得有些“断层”。
在笔者看来,《生成扩散模型漫谈(十七):构建ODE的一般步骤(下)》所介绍的ReFlow是理解扩散ODE的最直观方案,既然可以从扩散ODE的角度理解GAN,那么必定存在一个从ReFlow理解GAN的角度。经过一番尝试,笔者成功从ReFlow推出了类似WGAN-GP的结果。
理论回顾
之所以说“ReFlow是理解扩散ODE的最直观方案”,是因为它本身非常灵活,以及非常贴近实验代码——它能够通过ODE建立任意噪声分布到目标数据分布的映射,而且训练目标非常直观,不需要什么“弯弯绕绕”就可以直接跟实验代码对应起来。
Lion/Tiger优化器训练下的Embedding异常和对策
By 苏剑林 | 2023-08-28 | 34273位读者 | 引用打从在《Tiger:一个“抠”到极致的优化器》提出了Tiger优化器之后,Tiger就一直成为了我训练模型的“标配”优化器。最近笔者已经尝试将Tiger用到了70亿参数模型的预训练之中,前期效果看上来尚可,初步说明Tiger也是能Scale Up的。不过,在查看训练好的模型权重时,笔者发现Embedding出现了一些异常值,有些Embedding的分量达到了$\pm 100$的级别。
经过分析,笔者发现类似现象并不会在Adam中出现,这是Tiger或者Lion这种带符号函数$\text{sign}$的优化器特有的问题,对此文末提供了两种参考解决方案。本文将记录笔者的分析过程,供大家参考。
现象
接下来,我们的分析都以Tiger优化器为例,但分析过程和结论同样适用于Lion。
BytePiece:更纯粹、更高压缩率的Tokenizer
By 苏剑林 | 2023-09-07 | 61776位读者 | 引用目前在LLM中最流行的Tokenizer(分词器)应该是Google的SentencePiece了,因为它符合Tokenizer的一些理想特性,比如语言无关、数据驱动等,并且由于它是C++写的,所以Tokenize(分词)的速度很快,非常适合追求效率的场景。然而,它也有一些明显的缺点,比如训练速度慢(BPE算法)、占用内存大等,同时也正因为它是C++写的,对于多数用户来说它就是黑箱,也不方便研究和二次开发。
事实上,Tokenizer的训练就相当于以往的“新词发现”,而笔者之前也写过中文分词和最小熵系列文章,对新词发现也有一定的积累,所以很早之前就有自己写一版Tokenizer的想法。这几天总算腾出了时间初步完成了这件事情,东施效颦SentencePiece,命名为“BytePiece”。
大词表语言模型在续写任务上的一个问题及对策
By 苏剑林 | 2023-09-13 | 35074位读者 | 引用对于LLM来说,通过增大Tokenizer的词表来提高压缩率,从而缩短序列长度、降低解码成本,是大家都喜闻乐见的事情。毕竟增大词表只需要增大Embedding层和输出的Dense层,这部分增加的计算量几乎不可感知,但缩短序列长度之后带来的解码速度提升却是实打实的。当然,增加词表大小也可能会对模型效果带来一些负面影响,所以也不能无节制地增加词表大小。本文就来分析增大词表后语言模型在续写任务上会出现的一个问题,并提出参考的解决方案。
优劣分析
增加词表大小的好处是显而易见的。一方面,由于LLM是自回归的,它的解码会越来越慢,而“增大词表 → 提高压缩率 → 缩短序列长度”,换言之相同文本对应的tokens数变少了,也就是解码步数变少了,从而解码速度提升了;另一方面,语言模型的训练方式是Teacher Forcing,缩短序列长度能够缓解Teacher Forcing带来的Exposure Bias问题,从而可能提升模型效果。
最近评论