7 Oct

深度学习中的Lipschitz约束:泛化与生成模型

前言:去年写过一篇WGAN-GP的入门读物《互怼的艺术:从零直达WGAN-GP》,提到通过梯度惩罚来为WGAN的判别器增加Lipschitz约束(下面简称“L约束”)。前几天遐想时再次想到了WGAN,总觉得WGAN的梯度惩罚不够优雅,后来也听说WGAN在条件生成时很难搞(因为不同类的随机插值就开始乱了...),所以就想琢磨一下能不能搞出个新的方案来给判别器增加L约束。

闭门造车想了几天,然后发现想出来的东西别人都已经做了,果然是只有你想不到,没有别人做不到。主要包含在这两篇论文中:《Spectral Norm Regularization for Improving the Generalizability of Deep Learning》《Spectral Normalization for Generative Adversarial Networks》

所以这篇文章就按照自己的理解思路,对L约束相关的内容进行简单的介绍。注意本文的主题是L约束,并不只是WGAN。它可以用在生成模型中,也可以用在一般的监督学习中。

L约束与泛化

扰动敏感

记输入为$x$,输出为$y$,模型为$f$,模型参数为$w$,记为
$$\begin{equation}y = f_w(x)\end{equation}$$
很多时候,我们希望得到一个“稳健”的模型。何为稳健?一般来说有两种含义,一是对于参数扰动的稳定性,比如模型变成了$f_{w+\Delta w}(x)$后是否还能达到相近的效果?如果在动力学系统中,还要考虑模型最终是否能恢复到$f_w(x)$;二是对于输入扰动的稳定性,比如输入从$x$变成了$x+\Delta x$后,$f_w(x+\Delta x)$是否能给出相近的预测结果。读者或许已经听说过深度学习模型存在“对抗攻击样本”,比如图片只改变一个像素就给出完全不一样的分类结果,这就是模型对输入过于敏感的案例。

点击阅读全文...

10 Oct

变分自编码器 = 最小化先验分布 + 最大化互信息

这篇文章很简短,主要描述的是一个很有用、也不复杂、但是我居然这么久才发现的事实~

《深度学习的互信息:无监督提取特征》一文中,我们通过先验分布和最大化互信息两个loss的加权组合来得到Deep INFOMAX模型最后的loss。在那篇文章中,虽然把故事讲完了,但是某种意义上来说,那只是个拼凑的loss。而本文则要证明那个loss可以由变分自编码器自然地导出来。

过程

不厌其烦地重复一下,变分自编码器(VAE)需要优化的loss是
\begin{equation}\begin{aligned}&KL(\tilde{p}(x)p(z|x)\Vert q(z)q(x|z))\\
=&\iint \tilde{p}(x)p(z|x)\log \frac{\tilde{p}(x)p(z|x)}{q(x|z)q(z)} dzdx\end{aligned}\end{equation}
相关的论述在本博客已经出现多次了。VAE中既包含编码器,又包含解码器,如果我们只需要编码特征,那么再训练一个解码器就显得很累赘了。所以重点是怎么将解码器去掉。

其实再简单不过了,把VAE的loss分开两部分

点击阅读全文...

16 Oct

再谈非方阵的行列式

几年前,笔者曾经以自己对矩阵的粗浅理解写了一个“理解矩阵”系列,其中有一篇《为什么只有方阵有行列式?》讨论了非方阵的行列式问题,里边给出了“非方针的行列式不好看”和“方阵的行列式就够了”的观点。本文来再次思考这个问题。

首先回顾方阵的行列式,其实行列式最重要的价值在于它的几何意义:

n维方阵的行列式的绝对值,等于它的各个行(或列)向量所张成的n维立体的超体积。

这个几何意义是行列式的一切重要性的源头,相关的讨论可以参考《行列式的点滴》,它也是我们讨论非方阵行列式的基础。

分析

对于方阵$\boldsymbol{A}_{n\times n}$来说,可以将它看成$n$个行向量的组合,也可以看成$n$个列向量的组合,不管是哪一种,行列式的绝对值都等于这$n$个向量所张成的$n$维立体的超体积。换句话说,对于方阵来说,行、列向量的区分不改变行列式。

对于非方阵$\boldsymbol{B}_{n \times k}$就不一样了,不失一般性,假设$n > k$。我们可以将它看成$n$个$k$维行向量的组合,也可以看成$k$个$n$维列向量的组合。非方针的行列式,应该也具有同样含义,即它们所张成的立体的超体积。

我们来看第一种情况,如果看成$n$个$k$维行向量,那么就得视为这$n$个向量张成的$n$维体的超体积了,但是要注意$n > k$,因此这$n$个向量必然线性相关,因此它们根本就张不成一个$n$维体,也许是一个$n-1$维体甚至更低,这样一来,它的$n$维体的超体积自然为0。

但是第二种情况就没有那么平凡了。如果看成$k$个$n$维列向量,那么这$k$个向量虽然是$n$维的,但它们张成的是一个$k$维体,这$k$维体的超体积未必为0。我们就以这个非平凡的体积作为非方阵行列式的定义好了。

点击阅读全文...

14 Jan

基于CNN和序列标注的对联机器人

缘起

前几天在量子位公众号上看到了《这个脑洞清奇的对联AI,大家都玩疯了》一文,觉得挺有意思,难得的是作者还整理并公开了数据集,所以决定自己尝试一下。

动手

“对对联”,我们可以看成是一个句子生成任务,可以用seq2seq完成,跟笔者之前写的《玩转Keras之seq2seq自动生成标题》一样,稍微修改一下输入即可。上面提到的文章所用的方法也是seq2seq,可见这算是标准做法了。

点击阅读全文...

15 Feb

在这个系列中,我们尝试从能量的视角理解GAN。我们会发现这个视角如此美妙和直观,甚至让人拍案叫绝。

上一篇文章里,我们给出了一个直白而用力的能量图景,这个图景可以让我们轻松理解GAN的很多内容,换句话说,通俗的解释已经能让我们完成大部分的理解了,并且把最终的结论都已经写了出来。在这篇文章中,我们继续从能量的视角理解GAN,这一次,我们争取把前面简单直白的描述,用相对严密的数学语言推导一遍

跟第一篇文章一样,对于笔者来说,这个推导过程依然直接受启发于Bengio团队的新作《Maximum Entropy Generators for Energy-Based Models》

原作者的开源实现:https://github.com/ritheshkumar95/energy_based_generative_models

本文的大致内容如下:

1、推导了能量分布下的正负相对抗的更新公式;

2、比较了理论分析与实验采样的区别,而将两者结合便得到了GAN框架;

3、导出了生成器的补充loss,理论上可以防止mode collapse;

4、简单提及了基于能量函数的MCMC采样。

点击阅读全文...

30 Jan

“看那挖坑的人,有啥不一样~”

“看那挖坑的人,有啥不一样~”

在这个系列中,我们尝试从能量的视角理解GAN。我们会发现这个视角如此美妙和直观,甚至让人拍案叫绝。

本视角直接受启发于Benjio团队的新作《Maximum Entropy Generators for Energy-Based Models》,这篇文章前几天出现在arxiv上。当然,能量模型与GAN的联系由来已久,并不是这篇文章的独创,只不过这篇文章做得仔细和完善一些。另外本文还补充了自己的一些理解和思考上去,力求更为易懂和完整。

作为第一篇文章,我们先来给出一个直白的类比推导:GAN实际上就是一场前仆后继(前挖后跳?)的“挖坑”与“跳坑”之旅~

总的来说,本文的大致内容如下:

1、给出了GAN/WGAN的清晰直观的能量图像;

2、讨论了判别器(能量函数)的训练情况和策略;

3、指出了梯度惩罚一个非常漂亮而直观的能量解释;

4、讨论了GAN中优化器的选择问题。

点击阅读全文...

1 Mar

构造一个显式的、总是可逆的矩阵

《恒等式 det(exp(A)) = exp(Tr(A)) 赏析》一文我们得到矩阵$\exp(\boldsymbol{A})$总是可逆的,它的逆就是$\exp(-\boldsymbol{A})$。问题是$\exp(\boldsymbol{A})$只是一个理论定义,单纯这样写没有什么价值,因为它要把每个$\boldsymbol{A}^n$都算出来。

有没有什么具体的例子呢?有,本文来构造一个显式的、总是可逆的矩阵。

其实思路非常简单,假设$\boldsymbol{x},\boldsymbol{y}$是两个$k$维列向量,那么$\boldsymbol{x}\boldsymbol{y}^{\top}$就是一个$k\times k$的矩阵,我们就来考虑
\begin{equation}\begin{aligned}\exp\left(\boldsymbol{x}\boldsymbol{y}^{\top}\right)=&\sum_{n=0}^{\infty}\frac{\left(\boldsymbol{x}\boldsymbol{y}^{\top}\right)^n}{n!}\\
=&\boldsymbol{I}+\boldsymbol{x}\boldsymbol{y}^{\top}+\frac{\boldsymbol{x}\boldsymbol{y}^{\top}\boldsymbol{x}\boldsymbol{y}^{\top}}{2}+\frac{\boldsymbol{x}\boldsymbol{y}^{\top}\boldsymbol{x}\boldsymbol{y}^{\top}\boldsymbol{x}\boldsymbol{y}^{\top}}{6}+\dots\end{aligned}\end{equation}

点击阅读全文...

18 Feb

恒等式 det(exp(A)) = exp(Tr(A)) 赏析

本文的主题是一个有趣的矩阵行列式的恒等式
\begin{equation}\det(\exp(\boldsymbol{A})) = \exp(\text{Tr}(\boldsymbol{A}))\label{eq:main}\end{equation}
这个恒等式在挺多数学和物理的计算中都出现过,笔者都在不同的文献中看到过好几次了。

注意左端是矩阵的指数,然后求行列式,这两步都是计算量非常大的运算;右端仅仅是矩阵的迹(一个标量),然后再做标量的指数。两边的计算量差了不知道多少倍,然而它们居然是相等的!这不得不说是一个神奇的事实。

所以,本文就来好好欣赏一个这个恒等式。

点击阅读全文...