17 Jun

骑自行车游新兴

这几天潜水去了,和几个同学一起骑自行车游新兴(我们县),计划是去尽可能多的同学家。
所以网站这几天应该很少更新了,而且QQ上有人叫我可能不能及时回复,请见谅。^_^

点击阅读全文...

23 Jun

费曼积分法——积分符号内取微分(3)

由于自行车之旅的原因,这篇文章被搁置了一个星期,其实应该在一个星期前就把它写好的。这篇文章继续讲讲费曼积分法的一些例子。读者或许可以从这些不同类型的例子中,发现它应用的基本方向和方法,从而提升对它的认识。

例子2:

$$\int_0^{\infty} \frac{\sin x}{x}dx$$

这也是一种比较常见的类型,它的形式为$\int \frac{f(x)}{x}dx$,对于这种形式,我们的第一感觉就是将其改写成参数形式$\int \frac{f(ax)}{x}dx$,这样的目的很简单,就是把分母给消去了,与$\int \frac{x}{f(x)}dx$的求积思想是一致的。但是深入一点研究就会发现,纵使这样能够消去分母,使得第一次积分变得简单,但是到了第二次积分的时候,我们发现,它又会变回$\int \frac{f(x)}{x}dx$的积分,使我们不能继续进行下去,因此这个取参数的方法大多数情况下都是不行的。

点击阅读全文...

26 Jun

费曼积分法——积分符号内取微分(4)

趁着早上有空,就赶紧把这篇文章写好吧。下午高考成绩要公布了,公布后也许又会有一段时间忙碌了。这应该是“费曼积分法”系列最后一篇文章了。它主要讲的还是费曼积分法的一个实例。不同的是,这是BoJone首次独立地用费曼积分法解决了一个问题。之前提到的一些例子,都是书本提供并结合了提示,BoJone才把它们算出来的。所以这个问题有着点点纪念意义。

数学研发论坛上wayne曾求证这样的命题:

$\int_0^{\infty}\frac{f(x,2m-1)-\sin x}{x^{2m+1}}dx$其中,f(x,2m-1)表示sinx的2m-1阶泰勒展开
如m=1时,
$$\int_0^{\infty}\frac{x-\sin x}{x^3}dx$$
m=2时
$$\int_0^{\infty}\frac{x-\frac{x^3}{6}-\sin x}{x^5}dx$$
借助软件我发现结果是:
$\frac{\pi(-1)^{m-1}}{2(2m)!}$

点击阅读全文...

30 Jun

今天傍晚出现了彩虹

今天傍晚看到了彩虹!当然这算不上什么奇观,但还是一道美丽的风景。

人说“不经历风雨,怎么见彩虹”,我发现彩虹不一定是在雨后的,今天我看彩虹的时候,就是暴风雨前夕。彩虹是在18点10分左右出现的,持续了5分钟左右吧,看着看着,雨越下越大,我被迫停止欣赏了,不过彩虹也随之消失了。

用一个老相机简单记录了一下这道亮丽的风景!这是我第一次拍摄彩虹^_^

不知道是相机问题还是真有其事,在照片上发现有两条彩虹。难道这次的彩虹是”双彩虹“?那可真是奇观了!


很老的家用数码相机,没有广角,不能拍摄全景,这是用photoshop把两张图片拼凑起来的,效果不好

点击阅读全文...

3 Jul

求多边形外角和的绝妙方法!

如图是一个三角形,要求三角形的外角和。外角和定义为“多边形每一个内角的补角之和”,比如这里的∠DAC+∠FCB+∠EBA。当然,这里一般指的是凸多边形。

三角形的外角和 (1)

三角形的外角和 (1)

显然,这并不是一个什么大难题,答案是360度,方法有很多,直接用内角和公式计算、想象成旋转一周甚至你亲自去测量一下都行。但我觉得最妙的方法无疑是下面的方法。

点击阅读全文...

18 Jul

科学空间终于恢复访问了!

经过10天的抢险维修,数据中心机房开始逐步恢复运行。科学空间也能够正常访问了!激动中...^_^

这是科学空间建立以来,宇宙驿站服务器所经受的最大一次灾难了,中断时间是迄今为止最长的一次。大量的天文科普网站都被中断,原因很简单,它们和科学空间一样,都把网站寄放在宇宙驿站服务器上。除了科学空间,中断访问的还有牧夫天文论坛、星友空间站、空间天文网等等。

点击阅读全文...

19 Jul

【备忘】在自己的电脑上搭建服务器

宇宙驿站维修期间,BoJone曾经想过用自己的电脑来搭建服务器,建立一个临时页面。但后来发现经常开着电脑不大好,就没有这样做了。不过如何在自己的电脑上搭建服务器,还是值得笔记一下的。

BoJone还在使用WinXP专业版系统,最标准的方法当然是使用IIS,可以一气呵成。但是考虑到IIS需要配置挺多东西的,所以就没有这样做了。所以自己在网上下载一些小软件,“拼凑”成了一个临时服务器。这样的方法也能够很方便地应用到各个Windows系统。

点击阅读全文...

20 Jul

“未解之谜”:为何不讲中点矩形法则?

前言

在之前的一些文章中,我们已经指出过现行教材的一些毛病。比如主次不当(最明显的是那些一上来就讲线性方程组的线性代数教程)、缺乏直观性、缺少引导性等,我想其中最主要的原因可能是过于随大流了,别人怎么编我们也跟着怎么编,缺乏自己的观点和逻辑,因此导致一些常见的毛病就一直流传了下来。也许正因如此,就导致了有那么一种奇怪的现象——明明有一种计算量少的、精确度高一些的方法,教科书几乎从未提及;另外一种计算量稍大、精确度稍低的方法,但每一本同类教科书都讲述了它。不能不说这是一个“未解之谜”......

本文要讲的就是这样的两种方法,它们分别是用来求定积分近似值的“中点矩形法则”和“梯形法则”。对于后者我想绝大多数学习过微积分的朋友都会有印象,它就是那个几乎出现在了所有微积分教材的方法;而前者我相信不少读者都未曾听闻,但让人意外的是,它的计算量稍低,精确度却稍高。本文就简单介绍这两种方法,并且比较它们的精度。而本文的独特之处在于,证明过程沿用了《复分析:可视化方法》的思路,使用几何方法漂亮地估计误差!

我们的目标是在难以精确计算的情况下,通过一定的方法求出$\int_a^b f(x)dx$的近似值,这些方法基本上都是利用了积分即面积的思想。

两种不同的方法

点击阅读全文...