27 Mar

《方程与宇宙》:活力积分和开普勒方程(二)

二体运动

二体运动

上一回的讨论中,我们已经解决了大部分的问题,并且表达了找到r或者$\theta$关于时间t的函数的希望。在最后的内容中,我们做了以下工作:

由(7)得到$\dot{\theta}=h/r^2$,代入(6)得到:
$$\ddot{r} -h^2/r^3=-\frac{\mu}{r^2}\tag{10}$$这是一个二阶微分方程,它的解很容易找出,但是这个积分太复杂:
$$\dot{r}\frac{d\dot{r}}{dr}=h^2/r^3-\frac{\mu}{r^2}$$
$\dot{r}d\dot{r}=(h^2/r^3-\frac{\mu}{r^2})dr$,两端积分
$$\dot{r}^2={2\mu}/r-h^2/r^2+K_1\tag{11}$$$$\Rightarrow {dt}/{dr}=\frac{r}{\sqrt{K_1 r^2+2\mu r-h^2}}$$
$t=\int \frac{r}{\sqrt{K_1 r^2+2\mu r-h^2}}dr$

点击阅读全文...

4 Apr

数值方法解方程之终极算法

呵呵,做了一回标题党,可能说得夸张了一点。说是“终极算法”,主要是因为它可以任意提高精度、而且几乎可以应付任何非线性方程(至少理论上是这样),提高精度是已知的迭代式上添加一些项,而不是完全改变迭代式的形式,当然在提高精度的同时,计算量也会随之增大。其理论基础依旧是泰勒级数。

我们考虑方程$x=f(y)$,已知y求x是很容易的,但是已知x求y并不容易。我们考虑把y在$(x_0,y_0)$处展开成x的的泰勒级数。关键是求出y的n阶导数$\frac{d^n y}{dx^n}$。我们记$f^{(n)}(y)=\frac{d^n x}{dy^n}$,并且有
$$\frac{dy}{dx}=\frac{1}{(\frac{dx}{dy})}=f'(y)^{-1}$$

点击阅读全文...

6 Feb

直上云霄的无穷指数方程

昨天在浏览网页的时候,发现了一道有趣的方程:
$$x^{x^{x^{\dots}}}=2$$
各位读者先别急着往下看,不妨自己求解一下?

点击阅读全文...

9 Feb

函数图像旋转公式(“想当然”的教训)

阅读小提示:亲爱的读者,你可以选择不读这篇文章,但如果你选择了阅读,请一定要阅读完。BoJone对“半途而废”所造成的后果一概不负责任^_^。

函数图像旋转

函数图像旋转

我们来考虑下一个旋转问题:将某一函数图像y=f(x),绕点(p,q)逆时针旋转了θ角之后,得到的图象的解析式。

点击阅读全文...

13 Feb

MathPlayer 2.2发布,大家升级啦!

如果你已经安装了MathPlayer,就这里检查一下你的版本是否最新版:
http://www.dessci.com/en/products/mathplayer/check.htm

如果你还没有安装,欢迎你点击下面的链接下载安装:
http://www.dessci.com/en/products/mathplayer/download.htm

点击阅读全文...

13 Feb

祝大家新春愉快!虎年飞跃!

happy.gif

虎跃神州显威风,春节瑞祥万象新;
乘虎追风送祝福,点点滴滴尽是情;
平安健康带给你,财富好运免费送;
儿女聪明学习好,父母欢乐显童心;
夫妻恩爱家和谐,样样如意都称心。

点击阅读全文...

18 Feb

两本天体力学的旧书...

由于BoJone有着天文和数学的共同爱好,所以近一段时间恋上了天体力学,这是天文的内容,也是数学在天文学大施拳脚的地方。每一步计算,都有可能是一个新的发现,这种感觉太棒了,也许这就是我前进的动力之一。

天体力学最重要、最基本的方法就是解微分方程,其中以常微分方程为主,而且更多的是常微分方程组。这对BoJone来说是一个极大的挑战,因为正在读高一的BoJone一切都得自学,这得以微积分、级数、解析几何等数学知识为基础,而且必须做到融会贯通,要把它当成手中的橡皮泥,随意捏弄,形变而质不变。不过幸好能够有轻松自由的学习环境,我相信,我可以!

前些天在淘宝上一位天爱把他收藏的旧书都出了,里面有一本《天体力学引论》和《天体力学教程》,这正是作者苦苦搜寻的天体力学教程呀!其实即便是大学用的天体力学书籍,也是80年代左右的书,这些书很少有更新,所以现在几乎没有出售的,一般有钱也买不到(让我捡了一个大便宜^_^)。店主链接

点击阅读全文...

21 Feb

寒假结束,今天上学了

我要上学了

我要上学了

越来越佩服前人,说出了“光阴似箭,日月如梭”的真理。是呀,期末考试仿佛只是在昨天,今天已经又要上学了;俯仰之间,一个月的时间就过去了。

毫无疑问,又因为我的懒惰和不坚持,浪费了我很多的时间。回想一下寒假,我究竟收获了什么呢?主要是两个方面吧:学术和情感

学术上,主要是数学天文学里面的内容。数学我主要是深入了微积分方面的内容,把微积分的思想深刻了一点点,把微分方程(组)熟悉了一点点。我有一种很熟悉的感觉:现在自学高等数学,就好比我之前在小学时间学习中学数学。那时候超傻,书本上说了$\lim_{\Delta x->0} f'(x)=\frac{f(x+\Delta x)-f(x)}{\Delta x}$,我看不懂这个式子,整天郁闷$f(x)$是不是指$f\cdot (x)$。不过尽管那时候不懂这些,还是懂应用,我用导数最基本的定义去求极值,得出了一些有趣的发现,使我的兴趣倍增。现在学习微积分也是这样的感觉,我觉得我仅仅是很显浅地接触到,还有很多等待仔细琢磨....

点击阅读全文...