费曼积分法——积分符号内取微分(3)
By 苏剑林 | 2012-06-23 | 51312位读者 | 引用由于自行车之旅的原因,这篇文章被搁置了一个星期,其实应该在一个星期前就把它写好的。这篇文章继续讲讲费曼积分法的一些例子。读者或许可以从这些不同类型的例子中,发现它应用的基本方向和方法,从而提升对它的认识。
例子2:
$$\int_0^{\infty} \frac{\sin x}{x}dx$$
这也是一种比较常见的类型,它的形式为$\int \frac{f(x)}{x}dx$,对于这种形式,我们的第一感觉就是将其改写成参数形式$\int \frac{f(ax)}{x}dx$,这样的目的很简单,就是把分母给消去了,与$\int \frac{x}{f(x)}dx$的求积思想是一致的。但是深入一点研究就会发现,纵使这样能够消去分母,使得第一次积分变得简单,但是到了第二次积分的时候,我们发现,它又会变回$\int \frac{f(x)}{x}dx$的积分,使我们不能继续进行下去,因此这个取参数的方法大多数情况下都是不行的。
费曼积分法——积分符号内取微分(4)
By 苏剑林 | 2012-06-26 | 72091位读者 | 引用趁着早上有空,就赶紧把这篇文章写好吧。下午高考成绩要公布了,公布后也许又会有一段时间忙碌了。这应该是“费曼积分法”系列最后一篇文章了。它主要讲的还是费曼积分法的一个实例。不同的是,这是BoJone首次独立地用费曼积分法解决了一个问题。之前提到的一些例子,都是书本提供并结合了提示,BoJone才把它们算出来的。所以这个问题有着点点纪念意义。
数学研发论坛上wayne曾求证这样的命题:
$\int_0^{\infty}\frac{f(x,2m-1)-\sin x}{x^{2m+1}}dx$其中,f(x,2m-1)表示sinx的2m-1阶泰勒展开
如m=1时,
$$\int_0^{\infty}\frac{x-\sin x}{x^3}dx$$
m=2时
$$\int_0^{\infty}\frac{x-\frac{x^3}{6}-\sin x}{x^5}dx$$
借助软件我发现结果是:
$\frac{\pi(-1)^{m-1}}{2(2m)!}$
求多边形外角和的绝妙方法!
By 苏剑林 | 2012-07-03 | 44628位读者 | 引用【翻译】庆祝希格斯玻色子的最终发现!
By 苏剑林 | 2012-07-18 | 28752位读者 | 引用【备忘】在自己的电脑上搭建服务器
By 苏剑林 | 2012-07-19 | 58500位读者 | 引用“未解之谜”:为何不讲中点矩形法则?
By 苏剑林 | 2012-07-20 | 53527位读者 | 引用前言
在之前的一些文章中,我们已经指出过现行教材的一些毛病。比如主次不当(最明显的是那些一上来就讲线性方程组的线性代数教程)、缺乏直观性、缺少引导性等,我想其中最主要的原因可能是过于随大流了,别人怎么编我们也跟着怎么编,缺乏自己的观点和逻辑,因此导致一些常见的毛病就一直流传了下来。也许正因如此,就导致了有那么一种奇怪的现象——明明有一种计算量少的、精确度高一些的方法,教科书几乎从未提及;另外一种计算量稍大、精确度稍低的方法,但每一本同类教科书都讲述了它。不能不说这是一个“未解之谜”......
本文要讲的就是这样的两种方法,它们分别是用来求定积分近似值的“中点矩形法则”和“梯形法则”。对于后者我想绝大多数学习过微积分的朋友都会有印象,它就是那个几乎出现在了所有微积分教材的方法;而前者我相信不少读者都未曾听闻,但让人意外的是,它的计算量稍低,精确度却稍高。本文就简单介绍这两种方法,并且比较它们的精度。而本文的独特之处在于,证明过程沿用了《复分析:可视化方法》的思路,使用几何方法漂亮地估计误差!
我们的目标是在难以精确计算的情况下,通过一定的方法求出$\int_a^b f(x)dx$的近似值,这些方法基本上都是利用了积分即面积的思想。
两种不同的方法
昨天清晨,台风“韦森特”正式来袭我们新兴,话说凌晨三点我已经被风声吵醒了。大概7点钟起床,刚好是台风最抢镜的时候,猛烈地刮呀刮,声音有点像卡车启动的声音......
昨天一整天断电,上午还断了固定电话(农村地区是这样的啦,断电是整体的,台风刮倒了电线杆;断电话是我自己家的问题),中午的时候,固话却自动连上了,郁闷中。下午风雨都基本停下来了,妈妈和我们就出去收拾“残局”,被风刮倒的东西可真不少,尤其是我家门口的两个小棚,惨不忍睹;还有门前的一些盆栽、菜、树等,都倒下了不少。三个人爬上爬下,慢慢维修、收拾。
晚上还是没来电,也好,很久没有尝试过烛光晚餐了。九点多钟的时候,电来了,但是又是一番故障——其他人家中的电都很正常,就我这里灯泡很暗、日光灯启动不了,明显是电压不够的问题。没办法,只好硬着头皮抢修了,排除了很多原因,最后甚至从隔壁家搭电过来,发现我们家的灯还是那么暗(电压不足的问题没有解决)——这说明只有一个可能了,外部电路都没有故障,是我家的内部电路出了问题,猜想某个地方串联了一个用电器分去了电压。但是电线都镶进墙里了,这么黑根本维修不了,没办法,先睡觉了。
复分析学习1:揭示微分与积分的联系
By 苏剑林 | 2012-08-02 | 34453位读者 | 引用笔者这段时间对复数尤其感兴趣,当然,严格来讲应该是复变函数内容,其中一个原因是通过它,我们可以把一些看似毫不相关的内容联系了起来,体现了数学的简洁美和统一美。我相当有兴趣的其中一个内容是实分析中的泰勒级数和傅里叶级数。这两者都是关于某个函数的级数展开式,其中泰勒级数是用于一般函数展开的,其各项系数通过求n阶导数得到;傅里叶级数的对象是周期函数,其各项系数是通过定积分求得的。在实数世界里,两者毫不相关,但是,复分析却告诉我们:它们只是同一个东西!只是将其在不同的角度“投影”到实数世界里,就产生了不同的“物像”,以至于我们认为它们是不同东西而已。
我们直接来看一个变魔术般的运算:
我们知道,在实数世界里头,我们有
$ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+...$,其中$|x| < 1$
最近评论