【问答】为什么绿色星星非常罕见呢?
By 苏剑林 | 2010-02-28 | 28270位读者 | 引用我们打算飞到小行星上——但是,哪一颗好呢?
By 苏剑林 | 2010-05-01 | 33801位读者 | 引用站长:已经很久没有翻译过科普文章了。现在再来尝试一下,依旧是“Google+金山+搜索+理解”的模式,依旧是那么烂的水平,依旧是那么差的文采,呵呵。有任何意见欢迎提出。 4月15日,美国总统巴拉克·奥巴马视察了位于佛罗里达州的肯尼迪航天中心并发表演讲,提出美国航天新计划:美国未来航天的目的地是火星和小行星,终止布什政府提出的国家载人航天飞行项目。他强有力地回击了其政策的批评者,同时呼吁私营企业铺设飞往火星的创新之路,而不是以国家之力展示美国的优势。 众所周知,载人登小行星比载人登月难多了。除了苛刻的技术条件外,适合登录的小行星也不多,奥巴马的新方案真的可行吗?让我们拭目以待!
威力巨大的“有向线段”
By 苏剑林 | 2010-06-27 | 20175位读者 | 引用《向量》系列——1.向心力公式证明
By 苏剑林 | 2010-07-15 | 57177位读者 | 引用向量在几何和物理中都有极其重要的作用,现在就让我们来看如何用向量研究物理中的圆周运动。
首先我们必须了解一些基础:
1.在向量中,只要一条“向径”($\vec{r}$)就可以描述出物体的运动,而不需要建立坐标系。这就是向量应用于物理的原因:物理定律不应该依赖于坐标系,而向量恰恰也不依赖于坐标系!
2.牛顿第二定律:$\vec{F}=m\vec{a}$
3.以及一些向量的微积分运算等(可以查阅维基百科或者相关资料)
在下面及以后的文章描述中,为了大家的阅读方便,把向量写成$\vec{r}$的形式,而非把字母加粗。一般情况下,在本站的描述中,有$|\vec{r}|=r,|\dot{\vec{r}}|=v,|\ddot{\vec{r}}|=a$。但是,$\dot{r}=\frac{d|\vec{r}|}{dt} != |\dot{\vec{r}}|$
太阳中心的压强和温度
By 苏剑林 | 2010-07-19 | 31365位读者 | 引用为了准备IOAA,同时也加深对天体物理的理解,所以就系统地学习一下天体物理学了。今天看到“太阳”这一章,并由此简单估算了一下太阳的中心压强和温度。
天体物理学给出了关于恒星结构的一些方程。假设存在一颗各项同性的球形恒星,则有
$\frac{dm(r)}{dr}=4\pi r^2 \rho(r)$————质量方程
其中m(r)是与恒星球心距离为r的一个球形区域内的总质量,$\rho(r)$是距离球心r处的物质的密度。我们也可以写成积分的形式
$$m(r)=\int_0^R 4\pi r^2 \rho(r)dr$$
其中R是恒星半径。这个方程的意思其实就是每一个壳层的质量叠加,所以就不详细推导了。
【科学松鼠会】猫江湖(科学也是可以很有趣的)
By 苏剑林 | 2010-08-02 | 18354位读者 | 引用不要认为科学是一门多么枯燥、深奥的的学科,只要有点创意,科学也可以有趣起来。这种创意并非来源于专业人员,而是来源于生活,来源于关注 ,来源于一颗好奇而勇敢的心。下面请看科学松鼠会推出的《猫江湖》。
我有一个梦想,这个种群将会觉醒,实现其立群信条的真谛:猫猫生而平等;
我有一个梦想,在食堂垃圾桶边,阉割猫和健全公猫能同席而坐,共叙兄弟情谊;
我有一个梦想,甚至连临时喂食点这个正义匿迹、压迫成风的地方,也将变成平等和自由的绿洲;
我有一个梦想,让天下的猫孩儿都有爸爸,我的四个孩子将在一个不是以他们的毛色,而是以健康优劣作为评判标准的国家里生活;
最近评论