基于双向GRU和语言模型的视角情感分析
By 苏剑林 | 2016-12-01 | 86723位读者 | 引用前段时间参加了一个傻逼的网络比赛——基于视角的领域情感分析,主页在这里。比赛的任务是找出一段话的实体然后判断情感,比如“我喜欢本田,我不喜欢丰田”这句话中,要标出“本田”和“丰田”,并且站在本田的角度,情感是积极的,站在丰田的角度,情感就是消极的。也就是说,等价于将实体识别和情感分析结合起来了。
吐槽
看起来很高端,哪里傻逼了?比赛任务本身还不错,值得研究,然而官方却很傻逼,主要体现为:1、比赛分初赛、复赛、决赛三个阶段,初赛一个多月时间,然后筛选部分进入复赛,复赛就简单换了一点数据,题目、数据的领域都没有变化,复赛也是一个月的时间,这傻逼复赛究竟有什么意义?2、大家可以看看选手们在群里讨论什么:
端到端的腾讯验证码识别(46%正确率)
By 苏剑林 | 2016-12-14 | 75913位读者 | 引用最新结果请参考:http://kexue.fm/archives/4503/
前段时间有幸得到了一个网友提供的一批带标签的腾讯验证码样本(验证码样板:http://captcha.qq.com/getimage),于是抽了点时间,测试了一下验证码识别的模型。
样本
这批验证码比较简单,4位的英文字母,有大小写,但输入的时候不区分大小写,图案有一定的混淆,传统的基于分割的方案估计比较难办。端到端的方案是,直接将验证码输入,做几个卷积层,然后连接几个分类器(26分类),然后就直接输出四个字母标签了。其实还真没有什么好说的,有样本就能做了,而且这个框架是通用的,可以用到区分大小写的情形(52分类),也可以用到英文数字混合的情形(再加10个类别而已)。
【中文分词系列】 6. 基于全卷积网络的中文分词
By 苏剑林 | 2017-01-13 | 60069位读者 | 引用之前已经写过用LSTM来做分词的方案了,今天再来一篇用CNN的,准确来说是FCN,全卷积网络。其实这个模型的主要目的并非研究中文分词,而是练习tensorflow。从两年前就开始用Keras了,可以说对它比较熟了,也渐渐发现了它的一些不足,比如处理变长输入时不方便、加入自定义的约束比较困难等,所以干脆试试原生的tensorflow了,试了之后发现其实也不复杂。嗯,都是python,能有多复杂。本文就是练习一下如何用tensorflow处理不定长输入任务,以中文分词为例,并在最后加入了硬解码,将深度学习与词典分词结合了起来。
CNN
另外,就是关于FCN的。放到语言任务中看,(一维)卷积其实就是ngram模型,从这个角度来看其实CNN远比RNN来得自然,RNN好像就是为序列任务精心设计的,而CNN则是传统ngram模型的一个延伸。另外不管CNN和RNN都有权值共享,看上去只是为了降低运算量的一个折中选择,但事实上里边大有道理。CNN中的权值共享是平移不变性的必然结果,而不是仅仅是降低运算量的一个选择,试想一下,将一幅图像平移一点点,或者在一个句子前插入一个无意义的空格(导致后面所有字都向后平移了一位),这样应该给出一个相似甚至相同的结果,而这要求卷积必然是权值共享的,即权值不能跟位置有关系。
记录一次半监督的情感分析
By 苏剑林 | 2017-05-04 | 52770位读者 | 引用本文是一次不怎么成功的半监督学习的尝试:在IMDB的数据集上,用随机抽取的1000个标注样本训练一个文本情感分类模型,并且在余下的49000个测试样本中,测试准确率为73.48%。
思路
本文的思路来源于OpenAI的这篇文章:
《OpenAI新研究发现无监督情感神经元:可直接调控生成文本的情感》
文章里边介绍了一种无监督(实际上是半监督)做情感分类的模型的方法,并且实验效果很好。然而文章里边的实验很庞大,对于个人来说几乎不可能重现(在4块Pascal GPU花了1个月时间训练)。不过,文章里边的思想是很简单的,根据里边的思想,我们可以做个“山寨版”的。思路如下:
我们一般用深度学习做情感分类,比较常规的思路就是Embedding层+LSTM层+Dense层(Sigmoid激活),我们常说的词向量,相当于预训练了Embedding层(这一层的参数量最大,最容易过拟合),而OpenAI的思想就是,为啥不连LSTM层一并预训练了呢?预训练的方法也是用语言模型来训练。当然,为了使得预训练的结果不至于丢失情感信息,LSTM的隐藏层节点要大一些。
fashion mnist的一个baseline (MobileNet 95%)
By 苏剑林 | 2017-08-27 | 81138位读者 | 引用浅尝
昨天简单试了一下在fashion mnist的gan模型,发现还能work,当然那个尝试也没什么技术水平,就是把原来的脚本改一下路径跑了就完事。今天回到fashion mnist本身的主要任务——10分类,用Keras测了一下一些模型在上面的分类效果,最后得到了94.5%左右的准确率,加上随机翻转的数据扩增能做到95%。
首先随便手写了一些模型的组合,测试发现准确率都不大好,看来对于这个数据集来说,自己构思模型是比较困难的了,于是想着用现成的模型结构。一说到现成的cnn模型,基本上我们都会想到VGG、ResNet、inception、Xception等,但这些模型为解决imagenet的1000分类问题而设计,用到这个入门级别的数据集上似乎过于庞大了,而且也容易过拟合。后来突然想起,Keras好像自带了个叫MobileNet的模型,查看了一下模型权重,发现参数量不大,但是容量应该还是可以的,故选用MobileNet做实验。
深究
【备忘】谈谈dropout
By 苏剑林 | 2017-08-08 | 33720位读者 | 引用其实这只是一篇备忘...
dropout是深度学习中防止过拟合的一项有效措施,当然,就其思想而言,dropout其实也不仅仅可以用在深度学习中,还可以用在传统的机器学习方法中,只不过在深度学习的神经网络框架下,dropout显得更为自然罢了。
做了什么
dropout是怎么操作的?一般来做,对于输入的张量$x$,dropout就是将部分元素置零,然后将置零后的结果做一个尺度变换。具体来说,以Keras的Dropout(0.6)(x)为例,实际上等价于numpy做的这件事情
import numpy as np
x = np.random.random((10,100)) #模拟一个batch_size=10、维度为100的输入
def Dropout(x, drop_proba):
return x*np.random.choice(
[0,1],
x.shape,
p=[drop_proba,1-drop_proba]
)/(1.-drop_proba)
print Dropout(x, 0.6)
基于fine tune的图像分类(百度分狗竞赛)
By 苏剑林 | 2017-10-13 | 28823位读者 | 引用前两年百度的大数据竞赛都是自然语言处理方面的,今年画风一转,变成了图像的细颗粒度分类,赛题内容就是将宠物狗归为100类中的其中一类。这个任务本身是很平凡的,做法也很常规,无外乎就是数据扩增、imagenet模型的fine tune、模型集成三个方面。笔者并不擅长于模型集成,只做了前面两个步骤,成绩也非常一般(准确率80%上下)。但感觉里边的某些代码可能对读者有帮助,遂共享一翻。下面结合着代码来讲解。
比赛官网(随时有失效的可能):http://js.baidu.com
模型
模型主要用tensorflow+keras实现。首先自然是导入各种模块
#! -*- coding:utf-8 -*-
import numpy as np
from scipy import misc
import tensorflow as tf
from keras.applications.xception import Xception,preprocess_input
from keras.layers import Input,Dense,Lambda,Embedding
from keras.layers.merge import multiply
from keras import backend as K
from keras.models import Model
from keras.optimizers import SGD
from tqdm import tqdm
import glob
np.random.seed(2017)
tf.set_random_seed(2017)
基于Conv1D的光谱分类模型(一维序列分类)
By 苏剑林 | 2018-05-02 | 118759位读者 | 引用前段时间天池出了个天文数据挖掘竞赛——LAMOST光谱分类(将对应的光谱识别为4类中的一类),虽然没有奖金,但还是觉得挺有意思,所以就报名参加了。做了一段时间,成绩自我感觉还可以,然而最后我却忘记了(或者说根本就没留意到)初赛最后两天还有一步是提交新的测试集结果,然后就没有然后了,留下了一个未竟的模型,可谓“出师未捷身先死”,还是被自己弄死的~
后来跟其他参赛选手讨论了一下,发现其实我的这个模型还是不错的。当时我记得初赛第一名的成绩是0.83+,而我当时的成绩是0.82+,排名大概是第4、5左右,而且据说很多分数在0.8+的队伍都已经使用了融合模型,而我这0.82+的成绩仅仅是单模型的结果~在平时的群聊中发现也有不少朋友在做一维序列分类模型,而光谱分类本质上也就是一个一维的序列分类,所以分享一下模型,估计对相关朋友会有一定的参考价值。
模型
事实上也不是什么特别的模型,就是普通的一维卷积加残差,对于熟悉图像处理的朋友,这实在是再普通不过的结构了。
最近评论