19 Mar

一本对称闯物理:相对论力学(一)

简单说说

《可畏的对称》

《可畏的对称》

笔者最近陶醉于从李对称的角度来理解力学和场论,并且计算得到一些比较有趣的结果,遂想在此与大家分享。我发现,仅仅需要一个描述对称的无穷小生成元和一些最基本的假设,几乎就可以完成地推导出整个相对论力学来,甚至推导出整个(经典)场论理论来。这确实是不可思议的,我现在能基本体会到当年徐一鸿大师写的《可畏的对称》的含义了。对称的威力如此之大,以至于我们真的不得不敬畏它。而在构思本文题目的时候,我也曾想到过用“可畏的对称”为题,但不免有抄袭和老套之嫌。后来想到曾有一部漫画叫《一本漫画闯天涯》,遂将“漫画”改成“对称”,“天涯”改成“物理”,似乎也能表达我对“对称”的感觉。

对称就是在某种变换下保持不变的性质,比如狭义相对论要求所有物理定律在所有惯性系中保持不变,这相对于要求描述物理定律的方程在匀速运动的坐标变换下保持不变,结合光速不变的要求,我们就可以推导出洛伦兹变换,从而完成地描述了狭义相对论里边的对称。然而,并不是任何时候都可以想推导洛伦兹变换那样,能够把一个完整的变换推导出来的。幸好,李对称的不需要完整的对称描述,它只需要“无穷小变换”(意味着我们可以忽略掉高阶项),对应地产生一个“无穷小生成元”,用这个无穷小生成元,就足以完整构建出我们所需要的物理来。这种“无穷小”决定“广泛”、“局部”决定“全局”的奇妙至今仍让我觉得不可思议。(关于李对称、无穷小生成元的基本概念,不妨先阅读:《求解微分方程的李对称方法》

点击阅读全文...

25 Mar

一本对称闯物理:相对论力学(二)

从这个系列的第一篇文章到本文,已经隔了好多天。其实本文的内容是跟第一篇的内容同时完成的,为什么这么久才更新呢?原因有二,其一是随着春天的到来人也开始懒起来了,颓废呀~;其二,我在思考着规范变换的问题。按照朗道《场论》的逻辑,发展完质点力学理论后,下一步就是发展场论,诸如电磁场、引力场等。但是场论中有个让我比较困惑的东西,即场论存在着“规范不变性”。按照一般观点,我们是将规范不变性看作是电磁场方程的一个结果,即推导出电磁场的方程后,“发现”它具有规范不变性。但是如果用本文的方法,即假定场有这种对称性,然后就可以构建出场方程了。可是,为什么场存在着规范不变性,我还未能思考清楚。据我阅读到的资料来看,这个不变性似乎跟广义不变性有关(电磁场也是,这似乎说明即使在平直时空的电磁场理论中也暗示了广义不变性?)。还有,似乎这个不变性需要在量子场论中才能得到比较满意的解释,可是这样的话,就离我还很远了。

好吧,我们还是先回到相对论力学的推导中。

“无”中生有

上一篇文章我们已经构建了相对论力学的无穷小生成元,并进行了延拓。我已经说过,仅需要无穷小的变换形式,就可以构建出完成的相对论力学定律出来(当然这需要一些比较“显然”的假设)。这是个几乎从“无”到有的过程,也是本文标题的含义所在。另一方面,这种从局部到整体的可能性,也给我们带来一些启示:假如方法是普适的,那么可以由此构造出我们需要的物理定律来,包括电磁场、引力场方程等。(当然,我离这个目标还有点远。)

点击阅读全文...

21 Apr

数独的自动推理

写在前面:作为离散数学的实验作业,我选择了研究数独。经过测试发现,数独的自动推理还不算难,我把两种常规的推理思路转化为了计算机代码,并结合了随机性推导,得到了一个解题能力还不错的数独程序。事实上,本文的程序还可以进一步优化,以得到更高能力的数独程序(只需要整理一下代码,加上几个循环和判断即可),但是我实在太懒,没有动力继续弄下去了,就这样先和大家分享吧。最后,笔者认为本文的算法是更接近我们的思维的算法。

数独简介

历史

相传数独源起于拉丁方阵(Latin Square),1970年代在美国发展,改名为数字拼图(Number Place)、之后流传至日本并发扬光大,以数学智力游戏智力拼图游戏发表。在1984年一本游戏杂志《パズル通信ニコリ》正式把它命名为数独,意思是“在每一格只有一个数字”。后来一位前任香港高等法院的新西兰籍法官高乐德(Wayne Gould)在1997年3月到日本东京旅游时,无意中发现了。他首先在英国的《泰晤士报》上发表,不久其他报纸也发表,很快便风靡全英国,之后他用了6年时间编写了电脑程式,并将它放在网站上,使这个游戏很快在全世界流行。

台湾于2005年5月由“中国时报”首度引进, 且每日连载, 亦造成很大的回响。台湾数独发展协会(Taiwan Sudoku Association, 简称 TSA)亦为世界解谜联盟会员。香港是在2005年7月30日由AM730在创刊时引入数独。中国大陆是在2007年2月28日正式引入数独。北京晚报智力休闲数独俱乐部(数独联盟前身)在新闻大厦举行加入世界谜题联合会的颁证仪式,成为世界谜题联合会的39个成员之一。(引用自“中文维基百科”: http://zh.wikipedia.org/wiki/数独

点击阅读全文...

25 Apr

当概率遇上复变:解析概率

每当看到数学的两个看似毫不相关的分支巧妙地联系了起来时,我总会为数学的神奇美丽惊叹不已。在很久以前,当我看到通过生成函数法把数论问题与复变函数方法结合起来,衍生出一门奇妙的“解析数论”时,我就惊叹过生成函数法的漂亮!可惜,一直都没有好好写整理这些内容。今天,当我在看李政道先生的《物理学中的数学方法》时,看到他把复变函数跟随机游动如鬼斧神工般了起来,再次让我拍案叫绝。最后实在压抑不住心中的激动,在此写写概率论和生成函数的事情。

数论与复变函数结合,就生成了一门“解析数论”,按照这个说法,概率与复变函数结合,应该就会有一门“解析概率”,但是我在网上搜索的时候,并没有发现这个名词的存在。经过如此,本文还是试用了这个名词。虽然这个名词没有流行,但事实上,解析概率的方法并不算新,它可以追溯到伟大的数学家拉普拉斯以及他的著作《分析概率论》中。尽管如此,这种巧妙漂亮的方法似乎没有得到大家应该有的充分的认识。

我觉得,即使作为一个简洁的计算工具,生成函数法这个美丽的技巧,也应该尽可能为科学爱好者所知,更不用说数学专业的朋友了。

点击阅读全文...

10 Jun

两百万前素数之和与前两百万素数之和

标题说了两道比较好玩的编程题,如果读者觉得标题绕的让人眩晕的话,那么让我再说得清晰一点:

两百万前素数之和指的是所有不超过两百万的素数的和;
前两百万素数之和指的是前两百万个素数的和。

我是从子谋的blog中看到这道题目的,前一道题目是Project Euler的第10题,后一道则是我跟子谋探索着玩的。关于子谋的研究和代码,大家可以去他的blog上学习。本文分享一下我自己的想法。

点击阅读全文...

22 Jul

初试在Python中使用PARI/GP

BoJone很喜欢Python,也很喜欢数论,所以就喜欢利用Python玩数论了。平时也喜欢自己动手写一些数论函数,毕竟Python支持大整数高精度运算,这点是非常好的;但是,在很多实际应用中,还是希望能有一个现成的数论函数库来调用。之前尝试过数学研发网的HugeCalc库,但是由于各种不熟悉不了了之。后来论坛上的无心老兄推荐了PARI/GP,小试一下,居然在Python上成功调用了。以后再也不用担心Python上的数论计算问题了,呵呵~

点击阅读全文...

12 Oct

集合的划分与贝尔数

集合上的一个等价关系决定了几何的一个划分,反之亦然,这直观上是不难理解的。但是,如果我要问一个有$n$个元素的有限集合,共有多少种不同的划分呢?以前感觉这也是一个很简单的问题,就没去细想,但前天抽象代数老师提到这是一个有相当难度的题目,于是研究了一下,发现里面大有文章。这里把我的研究过程简单分享一下,读者可以从中看到如何“从零到有”的过程。

以下假设有$n$个元素的有限集合为$\{1,2,\dots,n\}$,记它的划分数为$B(n)$。

前期:暴力计算

$n=3$的情况不难列出:
$$\begin{aligned}&\{\{1,2,3\}\},\{\{1,2\},\{3\}\},\{\{1,3\},\{2\}\},\\
&\{\{2,3\},\{1\}\},\{\{1\},\{2\},\{3\}\}\end{aligned}$$

点击阅读全文...

24 Oct

从费马大定理谈起(十一):有理点与切割线法

圆上的有理点

圆上的有理点

我们在这个系列的文章之中,探索了一些有关环和域的基本知识,并用整环以及唯一分解性定理证明了费马大定理在n=3和n=4时的情形。使用高斯整数环或者艾森斯坦整数环的相关知识,相对而言是属于近代的比较“高端”的代数内容(高斯生于1777年,艾森斯坦生于1823年,然而艾森斯坦英年早逝,只活到了1852年,高斯还活到了1855年。)。如果“顺利”的话,我们可以用这些“高端”的工具证明解的不存在性,或者求出通解(如果有解的话)。

然而,对于初等数论来讲,复数环和域的知识的门槛还是有点高了。其次,环和域是一个比较“强”的工具。这里的“强”有点“强势”的意味,是指这样的意思:如果它成功的话,它能够“一举破城”,把通解都求出来(或者证明解的不存在);如果它不成功的话,那么往往就连一点非平凡的解都求不出来。可是,有些问题是求出一部分解都已经很困难了,更不用说求出通解了(我们以后在研究$x^4+y^4 = z^4 + w^4 $的整数解的时候,就能深刻体会这点。)。因此,对于这些问题,单纯用环域的思想,很难给予我们(至少一部分)解。(当然,问题是如何才算是“单纯”,这也很难界定。这里的评论是比较粗糙的。)

点击阅读全文...