模型优化漫谈:BERT的初始标准差为什么是0.02?
By 苏剑林 | 2021-11-08 | 91249位读者 | 引用前几天在群里大家讨论到了“Transformer如何解决梯度消失”这个问题,答案有提到残差的,也有提到LN(Layer Norm)的。这些是否都是正确答案呢?事实上这是一个非常有趣而综合的问题,它其实关联到挺多模型细节,比如“BERT为什么要warmup?”、“BERT的初始化标准差为什么是0.02?”、“BERT做MLM预测之前为什么还要多加一层Dense?”,等等。本文就来集中讨论一下这些问题。
梯度消失说的是什么意思?
在文章《也来谈谈RNN的梯度消失/爆炸问题》中,我们曾讨论过RNN的梯度消失问题。事实上,一般模型的梯度消失现象也是类似,它指的是(主要是在模型的初始阶段)越靠近输入的层梯度越小,趋于零甚至等于零,而我们主要用的是基于梯度的优化器,所以梯度消失意味着我们没有很好的信号去调整优化前面的层。
Ladder Side-Tuning:预训练模型的“过墙梯”
By 苏剑林 | 2022-06-20 | 69824位读者 | 引用如果说大型的预训练模型是自然语言处理的“张良计”,那么对应的“过墙梯”是什么呢?笔者认为是高效地微调这些大模型到特定任务上的各种技巧。除了直接微调全部参数外,还有像Adapter、P-Tuning等很多参数高效的微调技巧,它们能够通过只微调很少的参数来达到接近全量参数微调的效果。然而,这些技巧通常只是“参数高效”而并非“训练高效”,因为它们依旧需要在整个模型中反向传播来获得少部分可训练参数的梯度,说白了,就是可训练的参数确实是少了很多,但是训练速度并没有明显提升。
最近的一篇论文《LST: Ladder Side-Tuning for Parameter and Memory Efficient Transfer Learning》则提出了一个新的名为“Ladder Side-Tuning(LST)”的训练技巧,它号称同时达到了参数高效和训练高效。是否真有这么理想的“过墙梯”?本来就让我们一起来学习一下。
利用CUR分解加速交互式相似度模型的检索
By 苏剑林 | 2022-11-02 | 29299位读者 | 引用文本相似度有“交互式”和“特征式”两种做法,想必很多读者对此已经不陌生,之前笔者也写过一篇文章《CoSENT(二):特征式匹配与交互式匹配有多大差距?》来对比两者的效果。总的来说,交互式相似度效果通常会好些,但直接用它来做大规模检索是不现实的,而特征式相似度则有着更快的检索速度,以及稍逊一筹的效果。
因此,如何在保证交互式相似度效果的前提下提高它的检索速度,是学术界一直都有在研究的课题。近日,论文《Efficient Nearest Neighbor Search for Cross-Encoder Models using Matrix Factorization》提出了一份新的答卷:CUR分解。
基于量子化假设推导模型的尺度定律(Scaling Law)
By 苏剑林 | 2023-05-18 | 36395位读者 | 引用尺度定律(Scaling Law),指的是模型能力与模型尺度之间的渐近关系。具体来说,模型能力我们可以简单理解为模型的损失函数,模型尺度可以指模型参数量、训练数据量、训练步数等,所谓尺度定律,就是研究损失函数跟参数量、数据量、训练步数等变量的大致关系。《Scaling Laws for Neural Language Models》、《Training Compute-Optimal Large Language Models》等工作的实验结果表明,神经网络的尺度定律多数呈现“幂律(Power law)”的形式。
为什么会是幂律呢?能否从理论上解释呢?论文《The Quantization Model of Neural Scaling》基于“量子化”假设给出了一个颇为有趣的推导。本文一同来欣赏一下。
语言模型输出端共享Embedding的重新探索
By 苏剑林 | 2023-07-20 | 30843位读者 | 引用预训练刚兴起时,在语言模型的输出端重用Embedding权重是很常见的操作,比如BERT、第一版的T5、早期的GPT,都使用了这个操作,这是因为当模型主干部分不大且词表很大时,Embedding层的参数量很可观,如果输出端再新增一个独立的同样大小的权重矩阵的话,会导致显存消耗的激增。不过随着模型参数规模的增大,Embedding层的占比相对变小了,加之《Rethinking embedding coupling in pre-trained language models》等研究表明共享Embedding可能会有些负面影响,所以现在共享Embedding的做法已经越来越少了。
本文旨在分析在共享Embedding权重时可能遇到的问题,并探索如何更有效地进行初始化和参数化。尽管共享Embedding看起来已经“过时”,但这依然不失为一道有趣的研究题目。
生成函数法与整数的分拆
By 苏剑林 | 2014-09-16 | 31521位读者 | 引用我们在高中甚至初中,都有可能遇到这样的题目:
设$x,y,z$是非负整数,问$x+y+z=2014$有多少组不同的解?(不同顺序视为不同的解)
难度稍高点,可以改为
设$x,y,z$是非负整数,$0\leq x\leq y\leq z$,问$x+y+z=2014$有多少组不同的解?
这些问题都属于整数的分拆问题(广为流传的哥德巴赫猜想也是一个整数分拆问题)。有很多不同的思路可以求解这两道题,然而,个人认为这些方法中最引人入胜的(可能也是最有力的)首推“生成函数法”。
关于生成函数,本节就不多作介绍了,如果缺乏相关基础的朋友,请先阅读相关资料了解该方法。不少数论的、离散数学的、计算机科学的书籍中,都介绍了生成函数法(也叫母函数法)。本质上讲,母函数法能有诸多应用,是因为$x^a\times x^b=x^{a+b}$这一性质的成立。
R136a1,300倍太阳质量的怪兽星
By 苏剑林 | 2010-07-29 | 28064位读者 | 引用原文链接:http://www.eso.org/public/news/eso1030/
译文来自:http://www.astronomy.com.cn/bbs/thread-141201-1-1.html
Stars Just Got Bigger 超大质量的巨星 A 300 Solar Mass Star Uncovered 发现超过300太阳质量的蓝超巨星
Using a combination of instruments on ESO’s Very Large Telescope, astronomers have discovered the most massive stars to date, one weighing at birth more than 300 times the mass of the Sun, or twice as much as the currently accepted limit of 150 solar masses. The existence of these monsters — millions of times more luminous than the Sun, losing weight through very powerful winds — may provide an answer to the question “how massive can stars be?”
借助于ESO的甚大望远镜(VLT),天文学家发现了创质量纪录的巨星——达300个太阳质量以上,是我们此前公认的(星族II)恒星质量上限——150个太阳的2倍。发现如此怪兽级恒星:光度是太阳的数百万倍,以极速恒星风迅速损失质量——由此产生了一个问题:恒星质量上限到底是多少?
达尔文的进化学说告诉我们,自然界总是在众多的生物中挑出最能够适应环境的物种,赋予它们更高的生存几率,久而久之,这些物种经过亿万年的“优胜劣汰”,进化成了今天的千奇百怪的生物。无疑,经过长期的选择,优良的形状会被累积下来,换句话讲,这些物种在某些环境适应能力方面已经达到最优或近乎最优的状态(又是一个极值问题了)。好,现在我们来考虑蘑菇。
蘑菇是一种真菌生物,一般生长在阴暗潮湿的环境中。喜欢湿润的它自然也不希望散失掉过多的水分,因此,它努力地调整自身的形状,使它的“失水”尽可能地少。假设单位面积的蘑菇的失水速度是一致的,那么问题就变成了使一个给定体积的立体表面积尽可能少的问题了。并且考虑到水平各向同性生长的问题,理想的蘑菇形状应该就是一个平面图形的旋转体。那么这个旋转体是什么呢?聪明的你是否想到了是一个球体(的一部分)呢?
最近评论