《向量》系列——1.向心力公式证明
By 苏剑林 | 2010-07-15 | 59560位读者 | 引用向量在几何和物理中都有极其重要的作用,现在就让我们来看如何用向量研究物理中的圆周运动。
首先我们必须了解一些基础:
1.在向量中,只要一条“向径”($\vec{r}$)就可以描述出物体的运动,而不需要建立坐标系。这就是向量应用于物理的原因:物理定律不应该依赖于坐标系,而向量恰恰也不依赖于坐标系!
2.牛顿第二定律:$\vec{F}=m\vec{a}$
3.以及一些向量的微积分运算等(可以查阅维基百科或者相关资料)
在下面及以后的文章描述中,为了大家的阅读方便,把向量写成$\vec{r}$的形式,而非把字母加粗。一般情况下,在本站的描述中,有$|\vec{r}|=r,|\dot{\vec{r}}|=v,|\ddot{\vec{r}}|=a$。但是,$\dot{r}=\frac{d|\vec{r}|}{dt} != |\dot{\vec{r}}|$
《向量》系列——2.曲率半径
By 苏剑林 | 2010-07-18 | 56492位读者 | 引用圆周是如此地和谐与完美,致使数学家和物理学家对它钟爱有加。几何上可以把一条曲线的局部看做一个圆弧,利用圆的性质去研究它(在数学上,曲率半径的倒数就是曲率,曲率越大,曲线越弯曲);物理学家喜欢把一个质点的曲线运动轨迹的局部看做圆周运动,利用圆周运动的方法来描述这种运动。这两种研究方法都告诉了我们,两种不同的“线”在极小的范围内可以等效的,这也为我们对科学进行探究提供了一点指导思想:把未知变已知,以已知看未知。物理学和数学的两种处理方法中,有一点是殊途同归的:那就是看轨迹看成一个圆后,圆的半径是多少?我们首先得求出它。
在数学分析上可以利用微积分的相关知识来推导曲率半径公式,而BoJone则更偏爱物理方法,通过物理和向量知识的结合,推导出曲率半径公式,让BoJone感到“别有一番风味”。
《向量》系列——3.当天体力学遇到向量(1)
By 苏剑林 | 2010-07-24 | 16354位读者 | 引用《方程与宇宙》:拉格朗日点,复数,向量(五)
By 苏剑林 | 2010-08-16 | 53279位读者 | 引用The New Calculation Of Lagrangian Point 4,5
上一回我们已经求出了拉格朗日点L1,L2,L3,并且希望能够求出L4,L5两个点。由于L4,L5与“地球-太阳”连线已经不共线了,所以前边的方法貌似不能够用了。为了得到一个通用的定义,我们可以采用以下方法来描述拉格朗日点:位于拉格朗日点的天体,它与太阳的连线以及地球与太阳的连线所组成的角的大小是恒定的。(这里为了方便,采用了地日系的拉格朗日点来描述,对于一般的三体问题是一样的)
对于L4,L5来说,我们或许可以设置一个新的向量来描述这两点的向径(如$\vec{R}$)。当我们这样做后,很快就会发现这样会令我们的计算走向死胡同。因为我们发现:已知两个向量的夹角和其中一个向量,我们很难把另一个向量用已知向量的式子表达出来。不能做到这一点,就不能找出$\vec{R}$与$\vec{r}$的关系,就无法联立方程求解。难道,我们这一条路走到尽头了吗?一开始BoJone也冥思苦想不得头绪,但是...
《向量》系列——4.天旋地转(向量,复数,极坐标)
By 苏剑林 | 2010-08-23 | 40528位读者 | 引用与向量的渊源极深的四元数
By 苏剑林 | 2010-08-27 | 33915位读者 | 引用当我们在使用向量进行几何、物理研究的时候,是否曾经想到:向量竟然起源于“数”?
当向量还没有发展起来的时候(虽然“有方向有大小的量”很早就被人们认识),复数已经得到了认可并且有了初步应用。当我们把复数跟向量联系起来时,我们也许会认为,因为复平面表示的复数运算与向量有着相似之处,才把复数跟几何联系起来。然而事实却相反,向量是从对复数乃至一种称为“四元数”的东西的研究中逐渐分离出来的。换句话说,历史中出现过“四元数”与向量分别研究几何的阶段,麦克斯韦(Maxwell) 将四元 数的数量部分和矢量部分分开,作为 实 体处理,作了大量的矢量分析。三维矢量分析的建立,及同四元数的正式分裂是18世纪80年代由Gibbs和Heaviside独立完成的。矢量代数被推广到矢量函数和矢量微积分,由此开始了四元数和矢量分析的争论,最终矢量分析占了上风。因而“四元数”渐渐离开了教科书。不过,“四元数”的一些特殊而巧妙的应用,仍然使我们不至于忘记它。
《向量》系列——5.平面向量微分方程与复数
By 苏剑林 | 2010-10-03 | 21009位读者 | 引用[更新]将向量乘法“退化”到复数
By 苏剑林 | 2011-02-04 | 59504位读者 | 引用向量有两个乘法:点乘和叉乘,其结果又分别叫做数量积和向量积。在很多情况下,用这两个定义的乘法运算都能够给我们带来很大的方便(其实它就是在实际问题中抽象出来的)。不过,也有相当一部分的二维问题用复数来描述更为简洁。于是,为了整合两者的巧妙之处,有必要把向量的两个乘法运算“退化”到复数中去(为什么用“退化”?因为向量是多维的,可以是3维、4维等,而复数运算只是二维的,很明显这是一种“退化”而不是“拓展”^_^)
运算法则:
点乘:
总法则:$Z_1 \cdot Z_2=|Z_1||Z_2|\cos(arg\frac{Z_2}{Z_1})$
$$\begin{aligned}1\cdot i=0 \\ i\cdot i=1 \\ \exp(i\theta)\cdot \exp(i\varphi)=\cos(\varphi -\theta) \\ iexp(i\theta)\cdot \exp(i\varphi)=-\sin(\theta-\varphi ) \\ Z_1 \cdot Z_2=Z_1 \bar{Z}_2+Z_2 \bar{Z}_1\end{aligned}$$
最近评论