动手做个DialoGPT:基于LM的生成式多轮对话模型
By 苏剑林 | 2020-09-07 | 100206位读者 | 引用如何应对Seq2Seq中的“根本停不下来”问题?
By 苏剑林 | 2020-06-16 | 61564位读者 | 引用在Seq2Seq的解码过程中,我们是逐个token地递归生成的,直到出现<eos>标记为止,这就是所谓的“自回归”生成模型。然而,研究过Seq2Seq的读者应该都能发现,这种自回归的解码偶尔会出现“根本停不下来”的现象,主要是某个片段反复出现,比如“今天天气不错不错不错不错不错...”、“你觉得我说得对不对不对不对不对不对...”等等,但就是死活不出现<eos>标记。ICML 2020的文章《Consistency of a Recurrent Language Model With Respect to Incomplete Decoding》比较系统地讨论了这个现象,并提出了一些对策,本文来简单介绍一下论文的主要内容。
解码算法
对于自回归模型来说,我们建立的是如下的条件语言模型
\begin{equation}p(y_t|y_{\lt t}, x)\label{eq:p}\end{equation}
那么解码算法就是在已知上述模型时,给定$x$来输出对应的$y=(y_1,y_2,\dots,y_T)$来。解码算法大致可以分为两类:确定性解码算法和随机性解码算法,原论文分别针对这两类解码讨论来讨论了“根本停不下来”问题,所以我们需要来了解一下这两类解码算法。
积分梯度:一种新颖的神经网络可视化方法
By 苏剑林 | 2020-06-28 | 88906位读者 | 引用本文介绍一种神经网络的可视化方法:积分梯度(Integrated Gradients),它首先在论文《Gradients of Counterfactuals》中提出,后来《Axiomatic Attribution for Deep Networks》再次介绍了它,两篇论文作者都是一样的,内容也大体上相同,后一篇相对来说更易懂一些,如果要读原论文的话,建议大家优先读后一篇。当然,它已经是2016~2017年间的工作了,“新颖”说的是它思路上的创新有趣,而不是指最近发表。
所谓可视化,简单来说就是对于给定的输入$x$以及模型$F(x)$,我们想办法指出$x$的哪些分量对模型的决策有重要影响,或者说对$x$各个分量的重要性做个排序,用专业的话术来说那就是“归因”。一个朴素的思路是直接使用梯度$\nabla_x F(x)$来作为$x$各个分量的重要性指标,而积分梯度是对它的改进。然而,笔者认为,很多介绍积分梯度方法的文章(包括原论文),都过于“生硬”(形式化),没有很好地突出积分梯度能比朴素梯度更有效的本质原因。本文试图用自己的思路介绍一下积分梯度方法。
线性Attention的探索:Attention必须有个Softmax吗?
By 苏剑林 | 2020-07-04 | 213794位读者 | 引用众所周知,尽管基于Attention机制的Transformer类模型有着良好的并行性能,但它的空间和时间复杂度都是$\mathcal{O}(n^2)$级别的,$n$是序列长度,所以当$n$比较大时Transformer模型的计算量难以承受。近来,也有不少工作致力于降低Transformer模型的计算量,比如模型剪枝、量化、蒸馏等精简技术,又或者修改Attention结构,使得其复杂度能降低到$\mathcal{O}(n\log n)$甚至$\mathcal{O}(n)$。
前几天笔者读到了论文《Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention》,了解到了线性化Attention(Linear Attention)这个探索点,继而阅读了一些相关文献,有一些不错的收获,最后将自己对线性化Attention的理解汇总在此文中。
Attention
当前最流行的Attention机制当属Scaled-Dot Attention,形式为
\begin{equation}Attention(\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V}) = softmax\left(\boldsymbol{Q}\boldsymbol{K}^{\top}\right)\boldsymbol{V}\label{eq:std-att}\end{equation}
这里的$\boldsymbol{Q}\in\mathbb{R}^{n\times d_k}, \boldsymbol{K}\in\mathbb{R}^{m\times d_k}, \boldsymbol{V}\in\mathbb{R}^{m\times d_v}$,简单起见我们就没显式地写出Attention的缩放因子了。本文我们主要关心Self Attention场景,所以为了介绍上的方便统一设$\boldsymbol{Q}, \boldsymbol{K}, \boldsymbol{V}\in\mathbb{R}^{n\times d}$,一般场景下都有$n > d$甚至$n\gg d$(BERT base里边$d=64$)。
修改Transformer结构,设计一个更快更好的MLM模型
By 苏剑林 | 2020-08-07 | 52337位读者 | 引用大家都知道,MLM(Masked Language Model)是BERT、RoBERTa的预训练方式,顾名思义,就是mask掉原始序列的一些token,然后让模型去预测这些被mask掉的token。随着研究的深入,大家发现MLM不单单可以作为预训练方式,还能有很丰富的应用价值,比如笔者之前就发现直接加载BERT的MLM权重就可以当作UniLM来做Seq2Seq任务(参考这里),又比如发表在ACL 2020的《Spelling Error Correction with Soft-Masked BERT》将MLM模型用于文本纠错。
然而,仔细读过BERT的论文或者亲自尝试过的读者应该都知道,原始的MLM的训练效率是比较低的,因为每次只能mask掉一小部分的token来训练。ACL 2020的论文《Fast and Accurate Deep Bidirectional Language Representations for Unsupervised Learning》也思考了这个问题,并且提出了一种新的MLM模型设计,能够有更高的训练效率和更好的效果。
L2正则没有想象那么好?可能是“权重尺度偏移”惹的祸
By 苏剑林 | 2020-08-14 | 35183位读者 | 引用L2正则是机器学习常用的一种防止过拟合的方法(应该也是一道经常遇到的面试题)。简单来说,它就是希望权重的模长尽可能小一点,从而能抵御的扰动多一点,最终提高模型的泛化性能。但是读者可能也会发现,L2正则的表现通常没有理论上说的那么好,很多时候加了可能还有负作用。最近的一篇文章《Improve Generalization and Robustness of Neural Networks via Weight Scale Shifting Invariant Regularizations》从“权重尺度偏移”这个角度分析了L2正则的弊端,并提出了新的WEISSI正则项。整个分析过程颇有意思,在这里与大家分享一下。
相关内容
这一节中我们先简单回顾一下L2正则,然后介绍它与权重衰减的联系以及与之相关的AdamW优化器。
L2正则的理解
为什么要添加L2正则?这个问题可能有多个答案。有从Ridge回归角度回答的,有从贝叶斯推断角度回答的,这里给出从扰动敏感性的角度的理解。
最小熵原理(六):词向量的维度应该怎么选择?
By 苏剑林 | 2020-08-20 | 98172位读者 | 引用随着NLP的发展,像Word2Vec、Glove这样的词向量模型,正逐渐地被基于Transformer的BERT等模型代替,不过经典始终是经典,词向量模型依然在不少场景发光发热,并且仍有不少值得我们去研究的地方。本文我们来关心一个词向量模型可能有的疑惑:词向量的维度大概多少才够?
先说结论,笔者给出的估算结果是
\begin{equation}n > 8.33\log N\label{eq:final}\end{equation}
更简约的话可以直接记$n > 8\log N$,其中$N$是词表大小,$n$就是词向量维度,$\log$是自然对数。当$n$超过这个阈值时,就说明模型有足够的容量容纳这$N$个词语(当然$n$越大过拟合风险也越大)。这样一来,当$N=100000$时,得到的$n$大约是96,所以对于10万个词的词向量模型来说,维度选择96就足够了;如果要容纳500万个词,那么$n$大概就是128。
再谈类别不平衡问题:调节权重与魔改Loss的对比联系
By 苏剑林 | 2020-08-31 | 75928位读者 | 引用类别不平衡问题,也称为长尾分布问题,在本博客里已经有好几次相关讨论了,比如《从loss的硬截断、软化到focal loss》、《将“Softmax+交叉熵”推广到多标签分类问题》、《通过互信息思想来缓解类别不平衡问题》。对于缓解类别不平衡,比较基本的方法就是调节样本权重,看起来“高端”一点的方法则是各种魔改loss了(比如Focal Loss、Dice Loss、Logits Adjustment等),本文希望比较系统地理解一下它们之间的联系。
从光滑准确率到交叉熵
这里的分析主要以sigmoid的2分类为主,但多数结论可以平行推广到softmax的多分类。设$x$为输入,$y\in\{0,1\}$为目标,$p_{\theta}(x) \in [0, 1]$为模型。理想情况下,当然是要评测什么指标,我们就去优化那个指标。对于分类问题来说,最朴素的指标当然就是准确率,但准确率并没有办法提供有效的梯度,所以不能直接来训练。
最近评论