思考:两个椭圆片能粘合成一个立体吗?
By 苏剑林 | 2019-07-21 | 58185位读者 | 引用Keras实现两个优化器:Lookahead和LazyOptimizer
By 苏剑林 | 2019-07-30 | 45708位读者 | 引用最近用Keras实现了两个优化器,也算是有点实现技巧,遂放在一起写篇文章简介一下(如果只有一个的话我就不写了)。这两个优化器的名字都挺有意思的,一个是look ahead(往前看?),一个是lazy(偷懒?),难道是两个完全不同的优化思路么?非也非也~只能说发明者们起名字太有创意了。
Lookahead
首先登场的是Lookahead优化器,它源于论文《Lookahead Optimizer: k steps forward, 1 step back》,是最近才提出来的优化器,有意思的是大牛Hinton和Adam的作者之一Jimmy Ba也出现在了论文作者列表当中,有这两个大神加持,这个优化器的出现便吸引了不少目光。
seq2seq之双向解码
By 苏剑林 | 2019-08-09 | 45527位读者 | 引用在文章《玩转Keras之seq2seq自动生成标题》中我们已经基本探讨过seq2seq,并且给出了参考的Keras实现。
本文则将这个seq2seq再往前推一步,引入双向的解码机制,它在一定程度上能提高生成文本的质量(尤其是生成较长文本时)。本文所介绍的双向解码机制参考自《Synchronous Bidirectional Neural Machine Translation》,最后笔者也是用Keras实现的。
背景介绍
研究过seq2seq的读者都知道,常见的seq2seq的解码过程是从左往右逐字(词)生成的,即根据encoder的结果先生成第一个字;然后根据encoder的结果以及已经生成的第一个字,来去生成第二个字;再根据encoder的结果和前两个字,来生成第三个词;依此类推。总的来说,就是在建模如下概率分解
\begin{equation}p(Y|X)=p(y_1|X)p(y_2|X,y_1)p(y_3|X,y_1,y_2)\cdots\label{eq:p}\end{equation}
HSIC简介:一个有意思的判断相关性的思路
By 苏剑林 | 2019-08-26 | 98537位读者 | 引用前几天,在机器之心看到这样的一个推送《彻底解决梯度爆炸问题,新方法不用反向传播也能训练ResNet》,当然,媒体的标题党作风我们暂且无视,主要看内容即可。机器之心的这篇文章,介绍的是论文《The HSIC Bottleneck: Deep Learning without Back-Propagation》的成果,里边提出了一种通过HSIC Bottleneck来训练神经网络的算法。
坦白说,这篇论文笔者还没有看明白,因为对笔者来说里边的新概念有点多了。不过论文中的“HSIC”这个概念引起了笔者的兴趣。经过学习,终于基本地理解了这个HSIC的含义和来龙去脉,于是就有了本文,试图给出HSIC的一个尽可能通俗(但可能不严谨)的理解。
背景
HSIC全称“Hilbert-Schmidt independence criterion”,中文可以叫做“希尔伯特-施密特独立性指标”吧,跟互信息一样,它也可以用来衡量两个变量之间的独立性。
百度实体链接比赛后记:行为建模和实体链接
By 苏剑林 | 2019-09-03 | 83737位读者 | 引用前几个月曾参加了百度的实体链接比赛,这是CCKS2019的评测任务之一,官方称之为“实体链指”,比赛于前几个星期完全结束。笔者最终的F1是0.78左右(冠军是0.80),排在第14名,成绩并不突出(唯一的特色是模型很轻量级,GTX1060都可以轻松跑起来),所以本文只是纯粹的记录过程,大牛们请一笑置之~
赛题介绍
所谓实体链接,主要指的是在已有一个知识库的情况下,预测输入query的某个实体对应知识库id。也就是说,知识库里边记录了很多实体,对于同一个名字的实体可能会有多个解释,每个解释用一个唯一id编号,我们要做的就是预测query中的实体究竟对应哪一个解释(id)。这是基于知识图谱的问答系统的必要步骤。
n维空间下两个随机向量的夹角分布
By 苏剑林 | 2019-11-13 | 131309位读者 | 引用昨天群里大家讨论到了$n$维向量的一些反直觉现象,其中一个话题是“一般$n$维空间下两个随机向量几乎都是垂直的”,这就跟二维/三维空间的认知有明显出入了。要从理论上认识这个结论,我们可以考虑两个随机向量的夹角$\theta$分布,并算算它的均值方差。
概率密度
首先,我们来推导$\theta$的概率密度函数。呃,其实也不用怎么推导,它是$n$维超球坐标的一个直接结论。
要求两个随机向量之间的夹角分布,很显然,由于各向同性,所以我们只需要考虑单位向量,而同样是因为各向同性,我们只需要固定其中一个向量,考虑另一个向量随机变化。不是一般性,考虑随机向量为
\begin{equation}\boldsymbol{x}=(x_1,x_2,\dots,x_n)\end{equation}
而固定向量为
\begin{equation}\boldsymbol{y}=(1,0,\dots,0)\end{equation}
抛开约束,增强模型:一行代码提升albert表现
By 苏剑林 | 2020-01-29 | 77864位读者 | 引用对抗训练浅谈:意义、方法和思考(附Keras实现)
By 苏剑林 | 2020-03-01 | 221926位读者 | 引用当前,说到深度学习中的对抗,一般会有两个含义:一个是生成对抗网络(Generative Adversarial Networks,GAN),代表着一大类先进的生成模型;另一个则是跟对抗攻击、对抗样本相关的领域,它跟GAN相关,但又很不一样,它主要关心的是模型在小扰动下的稳健性。本博客里以前所涉及的对抗话题,都是前一种含义,而今天,我们来聊聊后一种含义中的“对抗训练”。
本文包括如下内容:
1、对抗样本、对抗训练等基本概念的介绍;
2、介绍基于快速梯度上升的对抗训练及其在NLP中的应用;
3、给出了对抗训练的Keras实现(一行代码调用);
4、讨论了对抗训练与梯度惩罚的等价性;
5、基于梯度惩罚,给出了一种对抗训练的直观的几何理解。
最近评论