天文马拉松:观测国际空间站
By 苏剑林 | 2009-07-09 | 23288位读者 | 引用居然是他!奥巴马获得2009年诺贝尔和平奖!
By 苏剑林 | 2009-10-10 | 19285位读者 | 引用站长:因为10月8日就上学了,所以不能够及时上网查阅和更新文学奖和和平奖的消息。不过一直在用手机关注着,前天晚上7:00,就一直用手机关注着诺贝尔奖官方网站,最终发现德国人取得了文学奖。而昨天晚上,一个更加惊人的消息发出来了——2009年诺贝尔和平奖的得主竟然是Barack Obama!
太意外了!居然是我们熟悉的美国总统!世界各国也是这样的意外,然而,令人深思的应该是:颁布诺贝尔奖给奥巴马的主要原因,并非肯定奥巴马已经有的成就,应该是鼓励他带领美国为世界作出更大的贡献!由此观之,世界对这位美国总统的期望是十分大的!
中国网10月9日电 据路透社报道,10月9日美国总统贝拉克·奥巴马(Barack Obama )因为世界和平所做的工作,以及呼吁削减世界核武库而赢得2009年诺贝尔和平奖。
阿达马不等式
设有$n$阶实矩阵$\boldsymbol{A}=(a_{ij})_{n\times n}$,那么它的行列式满足阿达马(Hadamard)不等式
$$\begin{equation}
\left(\det \boldsymbol{A}\right)^2 \leq \prod\limits_{i=1}^{n}\left(a_{1i}^2+a_{2i}^2+\dots+a_{ni}^2\right)
\end{equation}$$
这是阿达马在1893年首先发表的。根据体积就是行列式的说法,上述不等式具有相当明显的几何意义。当$n=2$时,它就是说平行四边形的面积不大于两边长的乘积;当$n=3$时,它就是说平行六面体的体积不大于三条棱长的乘积;高维可以类比。这些结论在几何中几乎都是“显然成立”的东西。因此很难理解为什么这个不等式在1893年才被发现。当然,代数不会接受如此笼统的说法,它需要严格的证明。
伽马函数的傅里叶变换之路
By 苏剑林 | 2014-12-08 | 66693位读者 | 引用伽马函数
$$\Gamma(x)=\int_0^{+\infty}t^{x-1}e^{-t}dt$$
作为阶乘的推广,会让很多初学者感到困惑,对于笔者来说也不例外。一个最自然的问题就是:这般复杂的推广公式是如何得到的?
在cos.name的文章《神奇的伽马函数》中,有比较详细地对伽马函数的历史介绍,笔者细读之后也获益匪浅。但美中不足的是,笔者还是没能从中找到引出伽马函数的一种“自然”的办法。所谓“自然”,并不是说最简单的,而是根据一些基本的性质和定义,直接把伽马函数的表达式反解出来。它的过程和运算也许并不简单,但是思想应当是直接而简洁的。当然,我们不能苛求历史上伽马函数以这种方式诞生,但是作为事后探索是有益的,有助于我们了解伽马函数的特性。于是笔者尝试了以下途径,得到了一些结果,可是也得到了一些困惑。
力的无穷分解与格林函数法
By 苏剑林 | 2014-11-24 | 35432位读者 | 引用我小时候一直有个疑问:
直升机上的螺旋桨能不能用来挡雨?
一般的螺旋桨是若干个“条状”物通过旋转对称而形成的,也就是说,它并非一个面,按常理来说,它是没办法用来挡雨的。但是,如果在高速旋转的情况下,甚至假设旋转速度可以任意大,那么我们任意时刻都没有办法穿过它了,这种情况下,它似乎与一个实在的面无异?
力的无穷分解
而让人惊喜的是,在通常的物理系统中,将力分段为无数个小区间内的恒力的做法,能够导致正确的答案,而且,这恰好是线性常微分方程的格林函数法。下面我们来分析这一做法。
澳大利亚网站请您向外星人问好
By 苏剑林 | 2009-08-16 | 17444位读者 | 引用《自然极值》系列——8.极值分析
By 苏剑林 | 2010-12-26 | 45579位读者 | 引用本篇文章是《自然极值》系列最后一篇文章,估计也是2010年最后一篇文章了。在这个美好的2010年,想必大家一定收获匪浅,BoJone也在2010年成长了很多。在2010年的尾声,BoJone和科学空间都祝大家在新的一年里更加开心快乐,在科学的道路上更快速地前行。
在本文,BoJone将与大家讨论求极值的最基本原理。这一探讨思路受到了天才的费恩曼所著《费恩曼物理讲义》的启迪。我们分别对函数求极值(求导)和泛函数极值(变分)进行一些简略的分析。
一、函数求极值
对于一个函数$y=f(x)$,设想它在$x=x_0$处取到最大值,那么显然对于很小的增量$\Delta x$,有
$$f(x_0+\Delta x) \leq f(x_0)\tag{3}$$根据泰勒级数,我们有
$f(x_0+\Delta x)=f(x_0)+f'(x_0)\Delta x$————(4)
最近评论