14 Oct

【理解黎曼几何】1. 一条几何之路

一个月没更新了,这个月花了不少时间在黎曼几何的理解方面,有一些体会,与大家分享。记得当初孟岩写的《理解矩阵》,和笔者所写的《新理解矩阵》,读者反响都挺不错的,这次沿用了这个名称,称之为《理解黎曼几何》。

生活在二维空间的蚂蚁

生活在二维空间的蚂蚁

黎曼几何是研究内蕴几何的几何分支。通俗来讲,就是我们可能生活在弯曲的空间中,比如一只生活在二维球面的蚂蚁,作为生活在弯曲空间中的个体,我们并没有足够多的智慧去把我们的弯曲嵌入到更高维的空间中去研究,就好比蚂蚁只懂得在球面上爬,不能从“三维空间的曲面”这一观点来认识球面,因为球面就是它们的世界。因此,我们就有了内蕴几何,它告诉我们,即便是身处弯曲空间中,我们依旧能够测量长度、面积、体积等,我们依旧能够算微分、积分,甚至我们能够发现我们的空间是弯曲的!也就是说,身处球面的蚂蚁,只要有足够的智慧,它们就能发现曲面是弯曲的——跟哥伦布环球航行那样——它们朝着一个方向走,最终却回到了起点,这就可以断定它们自身所处的空间必然是弯曲的——这个发现不需要用到三维空间的知识。

点击阅读全文...

15 Oct

【理解黎曼几何】3. 测地线

测地线

黎曼度量应该是不难理解的,在微分几何的教材中,我们就已经学习过曲面的“第一基本形式”了,事实上两者是同样的东西,只不过看待问题的角度不同,微分几何是把曲面看成是三维空间中的二维子集,而黎曼几何则是从二维曲面本身内蕴地研究几何问题。

几何关心什么问题呢?事实上,几何关心的是与变换无关的“客观实体”(或者说是在变换之下不变的东西),这也是几何的定义。根据Klein提出的《埃尔朗根纲领》,几何就是研究在某种变换(群)下的不变性质的学科。如果把变换局限为刚性变换(平移、旋转、反射),那么就是欧式几何;如果变换为一般的线性变换,那就是仿射几何。而黎曼几何关心的是与一切坐标都无关的客观实体。比如说,我有一个向量,方向和大小都确定了,在直角坐标系是$(1, 1)$,在极坐标系是$(\sqrt{2}, \pi/4)$,虽然两个坐标系下的分量不同,但它们都是指代同一个向量。也就是说向量本身是客观存在的实体,跟所使用的坐标无关。从代数层面看,就是只要能够通过某种坐标变换相互得到的,我们就认为它们是同一个东西。

因此,在学习黎曼几何时,往“客观实体”方向思考,总是有益的。

平面上的测地线

平面上的测地线

有了度规,可以很自然地引入“测地线”这一实体。狭义来看,它就是两点间的最短线——是平直空间的直线段概念的推广(实际的测地线不一定是最短的,但我们先不纠结细节,而且这不妨碍我们理解它,因为测地线至少是局部最短的)。不难想到,只要两点确定了,那么不管使用什么坐标,两点间的最短线就已经确定了,因此这显然是一个客观实体。有一个简单的类比,就是不管怎么坐标变换,一个函数$f(x)$的图像极值点总是确定的——不管你变还是不变,它就在那儿,不偏不倚。

点击阅读全文...

21 Oct

【理解黎曼几何】7. 高斯-博内公式

令人兴奋的是,我们导出黎曼曲率的途径,还能够让我们一瞥高斯-博内公式( Gauss–Bonnet formula)的风采,真正体验一番研究内蕴几何的味道。

高斯-博内公式是大范围微分几何学的一个经典的公式,它建立了空间的局部性质和整体性质之间的联系。而我们从一条几何的路径出发,结合一些矩阵变换和数学分析的内容,逐步导出了测地线、协变导数、曲率张量,现在可以还可以得到经典的高斯-博内公式,可见我们在这条路上已经走得足够远了。虽然过程不尽善尽美,然而并没有脱离这个系列的核心:几何直观。本文的目的,正是分享黎曼几何的一种直观思路,既然是思路,以思想交流为主,不以严格证明为目的。因此,对于大家来说,这个系列权当黎曼几何的补充材料吧。

形式改写

首先,我们可以将式$(48)$重写为更有几何意义的形式。从

点击阅读全文...

4 Nov

【外微分浅谈】1. 绪论与启发

写在前面

在《理解黎曼几何》系列,笔者分享了一些黎曼几何的“几何”心得,同时遗留了一个问题:怎么真正地去算黎曼张量?MTW的《引力论》中提到了一种基于外微分的方法,可是我不熟悉外微分,遂学习了一番。确实,是《引力论》中快捷计算曲率张量的步骤让笔者决定深入了解外微分的。果然,可观的效益是第一推动力。

这系列文章主要分享一些外微分的学习心得,曾经过多次修改和完善,包含的内容很多,比如外积、活动标架、外微分及其在黎曼几何的一些应用等,最后包括一种计算曲率的有效方式

符号说明:在本系列中,用粗体的字母表示向量、矩阵以及基底,用普通字母来表示标量,它有可能是一个标量函数,也有可能是向量的分量,如无说明,则用$n$表示空间(流形)的维度。本文中同样使用了爱因斯坦求和法则,即相同的上下指标表示$1\sim n$遍历求和,即$\alpha_{\mu}\beta^{\mu}=\sum_{\mu=1}^{n} \alpha_{\mu}\beta^{\mu}$,习惯上将下标写在前面,比如$\alpha_{\mu}\beta^{\mu}$事实上跟$\beta^{\mu}\alpha_{\mu}$等价,但习惯写成前者。常用的一些记号是:$\mu,\nu$表示分量指标,$x^{\mu}$表示点的坐标分量,$dx^{\mu}$表示切向量(微元)的分量,$\alpha,\beta,\omega$等希腊字母也常用来表示微分形式。符号的使用有重复的地方,但符号的意义基本都在符号出现的附近有说明,因此应该不至于混淆。

最后,就是笔者其实对外微分还不是特别有感觉,因此文章中可能出现谬误之处,请读者见谅并指出。本系列命名为“外微分浅谈”,不是谦虚,确实是很浅,认识得浅,说的也很浅~

点击阅读全文...

4 Nov

【外微分浅谈】2. 反对称的威力

内积与外积

向量(这里暂时指的是二维或者三维空间中的向量)的强大之处,在于它定义了内积和外积(更多时候称为叉积、向量积等),它们都是两个向量之间的运算,其中,内积被定义为是对称的,而外积则被定义为反对称的,它们都满足分配律。

沿着书本的传统,我们用$\langle,\rangle$表示内积,用$\land$表示外积,对于外积,更多的时候是用$\times$,但为了不至于出现太多的符号,我们统一使用$\land$。我们将向量用基的形式写出来,比如
$$\boldsymbol{A}=\boldsymbol{e}_{\mu}A^{\mu} \tag{1} $$
其中$\boldsymbol{e}_{\mu}$代表着一组基,而$A^{\mu}$则是向量的分量。我们来计算两个向量$\boldsymbol{A},\boldsymbol{B}$的内积和外积,即
$$\begin{aligned}&\langle \boldsymbol{A}, \boldsymbol{B}\rangle=\langle \boldsymbol{e}_{\mu}A^{\mu}, \boldsymbol{e}_{\nu}B^{\nu}\rangle=\langle\boldsymbol{e}_{\mu},\boldsymbol{e}_{\nu}\rangle A^{\mu}A^{\nu}\\
&\boldsymbol{A}\land \boldsymbol{B}=(\boldsymbol{e}_{\mu}A^{\mu})\land (\boldsymbol{e}_{\nu}B^{\nu})=\boldsymbol{e}_{\mu}\land\boldsymbol{e}_{\nu} A^{\mu}B^{\nu}
\end{aligned} \tag{2} $$

点击阅读全文...

7 Nov

【外微分浅谈】6. 微分几何

终于开始谈到重点了,就是这部分内容促使我学习外微分的。用外微分可以方便地推导微分几何的一些内容,有时候还能方便计算。其主要根源在于:外微分本身在形式上是微分的推广,因此微分几何的东西能够使用外微分来描述并不出奇;然后,最重要的原因是,外微分把$dx^{\mu}$看成一组基,因此相当于在几何中引入了两组基,一组是本身的向量基(用张量的语言,就是逆变向量的基),这组基可以做对称的内积,另外一组基就是$dx^{\mu}$,这组基可以做反对称的外积。因此,当外微分引入几何时,微分几何就拥有了微分、积分、对称积、反对称积等各种“理想装备”,这就是外微分能够加速微分几何推导的主要原因。

标架的运动

前面已经得到
$$\begin{aligned}&\omega^{\mu}=h_{\alpha}^{\mu}dx^{\alpha}\\
&d\boldsymbol{r}=\hat{\boldsymbol{e}}_{\mu} \omega^{\mu}\\
&ds^2 = \eta_{\mu\nu} \omega^{\mu}\omega^{\nu}\\
&\langle \hat{\boldsymbol{e}}_{\mu}, \hat{\boldsymbol{e}}_{\nu}\rangle = \eta_{\mu\nu}\end{aligned} \tag{45} $$

点击阅读全文...

5 Nov

【外微分浅谈】4. 微分不微

外微分

向量的外积一般只定义于不超过3维的空间。为了在更高维空间中使用反对称运算,我们需要下面描述的微分形式与外微分。

我们知道,任意$x$的函数的微分都可以写成$dx^{\mu}$的线性组合,在这里,各$dx^{\mu}$实则上扮演了一个基的角色,因此,我们不妨把$dx^{\mu}$看成是一组基,并且把任意函数称为微分0形式,而诸如$\omega_{\mu}dx^{\mu}$的式子,称为微分1形式。

在$dx^{\mu}$这组基之上,我们定义外积$\land$,即有反对称的运算$dx^{\mu}\land dx^{\nu}$,并且把诸如$\omega_{\mu\nu}dx^{\mu}\land dx^{\nu}$的式子,称为微分2形式。注意到这是$n$维空间中的外积,$dx^{\mu}\land dx^{\nu}$事实上是一个新空间的基,而不能用$dx^{\mu}$的线性组合来表示。

点击阅读全文...

16 Nov

为什么勒贝格积分比黎曼积分强?

学过实变函数的朋友,总会知道有个叫勒贝格积分的东西,号称是黎曼积分的改进版。虽然“实变函数学十遍,泛函分析心泛寒”,在学习实变函数的时候,我们通常都是云里雾里的,不过到最后,在老师的“灌溉”之下,也就耳濡目染了知道了一些结论,比如“黎曼可积的函数(在有限区间),也是勒贝格可积的”,说白了,就是“勒贝格积分比黎曼积分强”。那么,问题来了,究竟强在哪儿?为什么会强?

黎曼

黎曼

勒贝格

勒贝格

这个问题,笔者在学习实变函数的时候并没有弄懂,后来也一直搁着,直到最近认真看了《重温微积分》之后,才有了些感觉。顺便说,齐民友老师的《重温微积分》真的很赞,值得一看。

本是同根生,相煎何太急?

点击阅读全文...