30 Aug

从费马大定理谈起(八):艾森斯坦整数

Gotthold_Eisenstein

Gotthold_Eisenstein

是时候向n=3进军了,为了证明这个情况,我们需要一个新的数环:艾森斯坦整数(Eisenstein Integer)。艾森斯坦是德国著名数学家,同时代的高斯曾经评价:“只有三个划时代的数学家:阿基米德,牛顿和艾森斯坦。”足见艾森斯坦的成就斐然。事实上,阅读费马大定理的研究史,同时也是在阅读数学名人录——没有超高的数学,几乎不可能在费马大定理中有所建树。

基本定义

跟高斯整数一样,艾森斯坦整数也是复整数的一种,其中,高斯整数是以1和$i$为基,$i$其实是一个四次单位根,也就是$x^4-1=0$的一个非实数根,因此高斯整数也叫做四次分圆整数;而艾森斯坦整数以1和$\omega$为基,$\omega$是三次单位根,也就是$x^3-1=0$的一个非实数根。任意一个艾森斯坦整数都可以记为$a+b\omega,\,a,b\in\mathbb{Z}$,艾森斯坦整数环记为$\mathbb{Z}[\omega]$,也称为三次分圆整数环

点击阅读全文...

23 Aug

从费马大定理谈起(七):费马平方和定理

本想着开始准备n=3的证明,但这需要引入Eisenstein整数的概念,而我们已经引入了高斯整数,高斯整数的美妙还没有很好地展示给读者。从n=4的两个证明可以知道,引入高斯整数的作用,是把诸如$z^n-y^n$的式子进行完全分解。然而,这一点并没有给我们展示多少高斯整数的神奇。读者或许已经知道,复分析中很多简单的结果,如果单纯用实数描述出来,便会给人巧夺天工的感觉,在涉及到高斯整数的数论中也是一样。本文就让我们来思考费马平方和定理,以此再领会在高斯整数中处理某些数论问题时的便捷。——我们从费马大定理谈起,但又并不仅仅只谈费马大定理。

费马平方和定理:奇素数$p$可以表示为两个整数的平方和,当且仅当该素数具有$4k+1$的形式,而且不考虑相加顺序的情况下,表示法是唯一的。

点击阅读全文...

10 Oct

从费马大定理谈起(十):x^3+y^3=z^3+w^3

Ramanujan

Ramanujan

在正式开始数学之前,我们不妨先说一个关于印度著名数学天才——拉马努金的轶事。拉马努金病重,哈代前往探望。哈代说:“我乘出租车来,车牌号码是1729,这数真没趣,希望不是不祥之兆。”拉马努金答道:“不,那是个有趣得很的数。可以用两个立方之和来表达而且有两种表达方式的数之中,1729是最小的。”(即$1729 = 1^3+12^3 = 9^3+10^3$,后来这类数称为的士数。)利特尔伍德回应这宗轶闻说:“每个整数都是拉马努金的朋友。”(来自维基百科

从这则轶事中,我们发现,确实存在的某些整数,可以表示为两种不同的立方和,换句话说,不定方程:
$$x^3+y^3=z^3+w^3$$

点击阅读全文...

25 Oct

从费马大定理谈起(十二):再谈谈切线法

首先谈点题外话,关于本系列以及本博客的写作。其实本博客的写作内容,代表了笔者在这段时间附近的研究成果。也就是说,我此时在写这篇文章,其实表明我这段时间正在研究这个问题。而接下来的研究是否有结果,有怎样的结果,则是完全不知道的。所以,我在写这篇文章的时候,并不确定下一篇文章会写些什么。有些类似的话题,我会放在同一个系列去写。但不管怎样,这些文章可能并不遵循常规的教学或者学习思路,有些内容还可能与主流的思想方法有相当出入,请读者见谅,望大家继续支持!

上一篇我们谈到了切线法来求二次和三次曲线的有理点。切线法在寻找不高于三次的曲线上的有理点是很成功的,可是对于更高次的曲线有没有类似的方法呢?换句话说,有没有推广的可能性。我们从纯代数的角度来回复一下切线法生效的原因。切线法,更一般的是割线法,能够起作用,主要是因为如果有理系数的三次方程有两个有理数的根,那么第三个根肯定是有理数。如果只有一个已知的有理根,那么就可以让两个根重合为已知的那个根,从而割线变成了切线。

点击阅读全文...

13 Jan

当概率遇上复变:从二项分布到泊松分布

泊松分布,适合于描述单位时间内随机事件发生的次数的概率分布,如某一服务设施在一定时间内受到的服务请求的次数、汽车站台的候客人数等。[维基百科]泊松分布也可以作为小概率的二项分布的近似,其推导过程在一般的概率论教材都会讲到。可是一般教材上给出的证明并不是那么让人赏心悦目,如《概率论与数理统计教程》(第二版,茆诗松等编)的第98页就给出的证明过程。那么,哪个证明过程才更让人点赞呢?我认为是利用母函数的证明。

二项分布的母函数为
$$\begin{equation}(q+px)^n,\quad q=1-p\end{equation}$$

点击阅读全文...

21 Jul

从“0.999...等于1”说开来

从小学到大学都可能被问到的但却又不容易很好地回答的问题中,“0.999...究竟等不等于1”肯定也算是相当经典的一个。然而,要清楚地回答这个问题并不容易,很多时候被提问者都会不自觉地弄晕,甚至有些“民科”还以这个问题“创造了新数学”。

本文试图就这个问题,给出比较通俗但比较严谨的回答。

什么是相等?

要回答0.999...等不等于1,首先得定义“相等”!什么才算相等?难道真的要写出来一模一样才叫相等吗?如果是这样的话,那么2-1都不等于1了,因为2-1跟1看起来都不一样啊。

显然我们需要给“相等”做出比较严格但是又让人公认的定义,才能对相等进行判断,显然,下面的定义是能够让很多人接受的:

$a = b$等切仅当$|a-b|=0$。

点击阅读全文...

1 Dec

熵的概念

作为一名物理爱好者,我一直对统计力学中“熵”这个概念感到神秘和好奇。因此,当我接触数据科学的时候,我也对最大熵模型产生了浓厚的兴趣。

熵是什么?在通俗的介绍中,熵一般有两种解释:(1)熵是不确定性的度量;(2)熵是信息的度量。看上去说的不是一回事,其实它们说的就是同一个意思。首先,熵是不确定性的度量,它衡量着我们对某个事物的“无知程度”。熵为什么又是信息的度量呢?既然熵代表了我们对事物的无知,那么当我们从“无知”到“完全认识”这个过程中,就会获得一定的信息量,我们开始越无知,那么到达“完全认识”时,获得的信息量就越大,因此,作为不确定性的度量的熵,也可以看作是信息的度量,说准确点,是我们能从中获得的最大的信息量。

点击阅读全文...

11 Dec

上集回顾

在第一篇中,笔者介绍了“熵”这个概念,以及它的一些来龙去脉。熵的公式为
$$S=-\sum_x p(x)\log p(x)\tag{1}$$

$$S=-\int p(x)\log p(x) dx\tag{2}$$
并且在第一篇中,我们知道熵既代表了不确定性,又代表了信息量,事实上它们是同一个概念。

说完了熵这个概念,接下来要说的是“最大熵原理”。最大熵原理告诉我们,当我们想要得到一个随机事件的概率分布时,如果没有足够的信息能够完全确定这个概率分布(可能是不能确定什么分布,也可能是知道分布的类型,但是还有若干个参数没确定),那么最为“保险”的方案是选择使得熵最大的分布。

最大熵原理

承认我们的无知

很多文章在介绍最大熵原理的时候,会引用一句著名的句子——“不要把鸡蛋放在同一个篮子里”——来通俗地解释这个原理。然而,笔者窃以为这句话并没有抓住要点,并不能很好地体现最大熵原理的要义。笔者认为,对最大熵原理更恰当的解释是:承认我们的无知!

点击阅读全文...