9 Dec

变分自编码器(八):估计样本概率密度

在本系列的前面几篇文章中,我们已经从多个角度来理解了VAE,一般来说,用VAE是为了得到一个生成模型,或者是做更好的编码模型,这都是VAE的常规用途。但除了这些常规应用外,还有一些“小众需求”,比如用来估计$x$的概率密度,这在做压缩的时候通常会用到。

本文就从估计概率密度的角度来了解和推导一下VAE模型。

两个问题

所谓估计概率密度,就是在已知样本$x_1,x_2,\cdots,x_N\sim \tilde{p}(x)$的情况下,用一个待定的概率密度簇$q_{\theta}(x)$去拟合这批样本,拟合的目标一般是最小化负对数似然:
\begin{equation}\mathbb{E}_{x\sim \tilde{p}(x)}[-\log q_{\theta}(x)] = -\frac{1}{N}\sum_{i=1}^N \log q_{\theta}(x_i)\label{eq:mle}\end{equation}

点击阅读全文...

17 Dec

Seq2Seq+前缀树:检索任务新范式(以KgCLUE为例)

两年前,在《万能的seq2seq:基于seq2seq的阅读理解问答》《“非自回归”也不差:基于MLM的阅读理解问答》中,我们在尝试过分别利用“Seq2Seq+前缀树”和“MLM+前缀树”的方式做抽取式阅读理解任务,并获得了不错的结果。而在去年的ICLR2021上,Facebook的论文《Autoregressive Entity Retrieval》同样利用“Seq2Seq+前缀树”的组合,在实体链接和文档检索上做到了效果与效率的“双赢”。

事实上,“Seq2Seq+前缀树”的组合理论上可以用到任意检索型任务中,堪称是检索任务的“新范式”。本文将再次回顾“Seq2Seq+前缀树”的思路,并用它来实现最近推出的KgCLUE知识图谱问答榜单的一个baseline。

本文baseline模型示意图

本文baseline模型示意图

点击阅读全文...

29 Dec

SquarePlus:可能是运算最简单的ReLU光滑近似

ReLU函数,也就是$\max(x,0)$,是最常见的激活函数之一,然而它在$x=0$处的不可导通常也被视为一个“槽点”。为此,有诸多的光滑近似被提出,比如SoftPlus、GeLU、Swish等,不过这些光滑近似无一例外地至少都使用了指数运算$e^x$(SoftPlus还用到了对数),从“精打细算”的角度来看,计算量还是不小的(虽然当前在GPU加速之下,我们很少去感知这点计算量了)。最近有一篇论文《Squareplus: A Softplus-Like Algebraic Rectifier》提了一个更简单的近似,称为SquarePlus,我们也来讨论讨论。

需要事先指出的是,笔者是不建议大家花太多时间在激活函数的选择和设计上的,所以虽然分享了这篇论文,但主要是提供一个参考结果,并充当一道练习题来给大家“练练手”。

定义

SquarePlus的形式很简单,只用到了加、乘、除和开方:
\begin{equation}\text{SquarePlus}(x)=\frac{x+\sqrt{x^2+b}}{2}\end{equation}

点击阅读全文...

25 Jan

Efficient GlobalPointer:少点参数,多点效果

《GlobalPointer:用统一的方式处理嵌套和非嵌套NER》中,我们提出了名为“GlobalPointer”的token-pair识别模块,当它用于NER时,能统一处理嵌套和非嵌套任务,并在非嵌套场景有着比CRF更快的速度和不逊色于CRF的效果。换言之,就目前的实验结果来看,至少在NER场景,我们可以放心地将CRF替换为GlobalPointer,而不用担心效果和速度上的损失。

在这篇文章中,我们提出GlobalPointer的一个改进版——Efficient GlobalPointer,它主要针对原GlobalPointer参数利用率不高的问题进行改进,明显降低了GlobalPointer的参数量。更有趣的是,多个任务的实验结果显示,参数量更少的Efficient GlobalPointer反而还取得更好的效果。

大量的参数

这里简单回顾一下GlobalPointer,详细介绍则请读者阅读《GlobalPointer:用统一的方式处理嵌套和非嵌套NER》。简单来说,GlobalPointer是基于内积的token-pair识别模块,它可以用于NER场景,因为对于NER来说我们只需要把每一类实体的“(首, 尾)”这样的token-pair识别出来就行了。

点击阅读全文...

30 Jan

GPLinker:基于GlobalPointer的实体关系联合抽取

在将近三年前的百度“2019语言与智能技术竞赛”(下称LIC2019)中,笔者提出了一个新的关系抽取模型(参考《基于DGCNN和概率图的轻量级信息抽取模型》),后被进一步发表和命名为“CasRel”,算是当时关系抽取的SOTA。然而,CasRel提出时笔者其实也是首次接触该领域,所以现在看来CasRel仍有诸多不完善之处,笔者后面也有想过要进一步完善它,但也没想到特别好的设计。

后来,笔者提出了GlobalPointer以及近日的Efficient GlobalPointer,感觉有足够的“材料”来构建新的关系抽取模型了。于是笔者从概率图思想出发,参考了CasRel之后的一些SOTA设计,最终得到了一版类似TPLinker的模型。

基础思路

关系抽取乍看之下是三元组$(s,p,o)$(即subject, predicate, object)的抽取,但落到具体实现上,它实际是“五元组”$(s_h,s_t,p,o_h,o_t)$的抽取,其中$s_h,s_t$分别是$s$的首、尾位置,而$o_h,o_t$则分别是$o$的首、尾位置。

点击阅读全文...

11 Mar

门控注意力单元(GAU)还需要Warmup吗?

在文章《训练1000层的Transformer究竟有什么困难?》发布之后,很快就有读者问到如果将其用到《FLASH:可能是近来最有意思的高效Transformer设计》中的“门控注意力单元(GAU)”,那结果是怎样的?跟标准Transformer的结果有何不同?本文就来讨论这个问题。

先说结论

事实上,GAU是非常容易训练的模型,哪怕我们不加调整地直接使用“Post Norm + Xavier初始化”,也能轻松训练个几十层的GAU,并且还不用Warmup。所以关于标准Transformer的很多训练技巧,到了GAU这里可能就无用武之地了...

为什么GAU能做到这些?很简单,因为在默认设置之下,理论上$\text{GAU}(\boldsymbol{x}_l)$相比$\boldsymbol{x}_l$几乎小了两个数量级,所以
\begin{equation}\boldsymbol{x}_{l+1} = \text{LN}(\boldsymbol{x}_l + \text{GAU}(\boldsymbol{x}_l))\approx \boldsymbol{x}_l\end{equation}

点击阅读全文...

19 Mar

为什么需要残差?一个来自DeepNet的视角

《训练1000层的Transformer究竟有什么困难?》中我们介绍了微软提出的能训练1000层Transformer的DeepNet技术。而对于DeepNet,读者一般也有两种反应,一是为此感到惊叹而点赞,另一则是觉得新瓶装旧酒没意思。出现后一种反应的读者,往往是因为DeepNet所提出的两个改进点——增大恒等路径权重和降低残差分支初始化——实在过于稀松平常,并且其他工作也出现过类似的结论,因此很难有什么新鲜感。

诚然,单从结论来看,DeepNet实在算不上多有意思,但笔者觉得,DeepNet的过程远比结论更为重要,它有意思的地方在于提供了一个简明有效的梯度量级分析思路,并可以用于分析很多相关问题,比如本文要讨论的“为什么需要残差”,它就可以给出一个比较贴近本质的答案。

增量爆炸

为什么需要残差?答案是有了残差才更好训练深层模型,这里的深层可能是百层、千层甚至万层。那么问题就变成了为什么没有残差就不容易训练深层模型呢?

点击阅读全文...

21 Mar

RoFormerV2:自然语言理解的极限探索

大概在1年前,我们提出了旋转位置编码(RoPE),并发布了对应的预训练模型RoFormer。随着时间的推移,RoFormer非常幸运地得到了越来越多的关注和认可,比如EleutherAI新发布的60亿200亿参数的GPT模型中就用上了RoPE位置编码,Google新提出的FLASH模型论文中则明确指出了RoPE对Transformer效果有明显的提升作用。

与此同时,我们也一直在尝试继续加强RoFormer模型,试图让RoFormer的性能“更上一层楼”。经过近半年的努力,我们自认为取得了还不错的成果,因此将其作为“RoFormerV2”正式发布:

点击阅读全文...