1 Jun

如何训练你的准确率?

最近Arxiv上的一篇论文《EXACT: How to Train Your Accuracy》引起了笔者的兴趣,顾名思义这是介绍如何直接以准确率为训练目标来训练模型的。正好笔者之前也对此有过一些分析,如《函数光滑化杂谈:不可导函数的可导逼近》《再谈类别不平衡问题:调节权重与魔改Loss的对比联系》等, 所以带着之前的研究经验很快完成了论文的阅读,写下了这篇总结,并附上了最近关于这个主题的一些新思考。

失实的例子

论文开头指出,我们平时用的分类损失函数是交叉熵或者像SVM中的Hinge Loss,这两个损失均不能很好地拟合最终的评价指标准确率。为了说明这一点,论文举了一个很简单的例子:假设数据只有$\{(-0.25,-1),(0,-1),(0.25,,1)\}$三个点,$-1$和$1$分别代表负类和正类,待拟合模型是$f(x)=x-b$,$b$是参数,我们希望通过$\text{sign}(f(x))$来预测类别。如果用“sigmoid + 交叉熵”,那么损失函数就是$-\log \frac{1}{1+e^{-l \cdot f(x)}}$,$(x,l)$代表一对标签数据;如果用Hinge Loss,则是$\max(0, 1 - l\cdot f(x))$。

点击阅读全文...

7 Jun

相对位置编码Transformer的一个理论缺陷与对策

位置编码是Transformer中很重要的一环,在《让研究人员绞尽脑汁的Transformer位置编码》中我们就总结了一些常见的位置编码设计。大体上,我们将Transformer的位置编码分为“绝对位置编码”和“相对位置编码”两类,其中“相对位置编码”在众多NLP/CV的实验表现相对来说更加好些。

然而,我们可以发现,目前相对位置编码几乎都是在Softmax之前的Attention矩阵上进行操作的,这种施加方式实际上都存在一个理论上的缺陷,使得Transformer无法成为“万能拟合器”。本文就来分析这个问题,并探讨一些解决方案。

简单探针

顾名思义,位置编码就是用来给模型补充上位置信息的。那么,如何判断一个模型有没有足够的识别位置的能力呢?笔者之前曾构思过一个简单的探针实验:

对于一个有识别位置能力的模型,应该有能力准确实现如下映射 \begin{equation}\begin{array}{lc} \text{输入:} & [0, 0, \cdots, 0, 0] \\ & \downarrow\\ \text{输出:} & [1, 2, \cdots, n-1, n] \end{array}\end{equation}

点击阅读全文...

27 Jul

生成扩散模型漫谈(四):DDIM = 高观点DDPM

相信很多读者都听说过甚至读过克莱因的《高观点下的初等数学》这套书,顾名思义,这是在学到了更深入、更完备的数学知识后,从更高的视角重新审视过往学过的初等数学,以得到更全面的认知,甚至达到温故而知新的效果。类似的书籍还有很多,比如《重温微积分》《复分析:可视化方法》等。

回到扩散模型,目前我们已经通过三篇文章从不同视角去解读了DDPM,那么它是否也存在一个更高的理解视角,让我们能从中得到新的收获呢?当然有,《Denoising Diffusion Implicit Models》介绍的DDIM模型就是经典的案例,本文一起来欣赏它。

思路分析

《生成扩散模型漫谈(三):DDPM = 贝叶斯 + 去噪》中,我们提到过该文章所介绍的推导跟DDIM紧密相关。具体来说,文章的推导路线可以简单归纳如下:
\begin{equation}p(\boldsymbol{x}_t|\boldsymbol{x}_{t-1})\xrightarrow{\text{推导}}p(\boldsymbol{x}_t|\boldsymbol{x}_0)\xrightarrow{\text{推导}}p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_0)\xrightarrow{\text{近似}}p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t)\end{equation}

点击阅读全文...

12 Aug

对于生成扩散模型来说,一个很关键的问题是生成过程的方差应该怎么选择,因为不同的方差会明显影响生成效果。

《生成扩散模型漫谈(二):DDPM = 自回归式VAE》我们提到,DDPM分别假设数据服从两种特殊分布推出了两个可用的结果;《生成扩散模型漫谈(四):DDIM = 高观点DDPM》中的DDIM则调整了生成过程,将方差变为超参数,甚至允许零方差生成,但方差为0的DDIM的生成效果普遍差于方差非0的DDPM;而《生成扩散模型漫谈(五):一般框架之SDE篇》显示前、反向SDE的方差应该是一致的,但这原则上在$\Delta t\to 0$时才成立;《Improved Denoising Diffusion Probabilistic Models》则提出将它视为可训练参数来学习,但会增加训练难度。

所以,生成过程的方差究竟该怎么设置呢?今年的两篇论文《Analytic-DPM: an Analytic Estimate of the Optimal Reverse Variance in Diffusion Probabilistic Models》《Estimating the Optimal Covariance with Imperfect Mean in Diffusion Probabilistic Models》算是给这个问题提供了比较完美的答案。接下来我们一起欣赏一下它们的结果。

点击阅读全文...

7 Dec

从局部到全局:语义相似度的测地线距离

前段时间在最近的一篇论文《Unsupervised Opinion Summarization Using Approximate Geodesics》中学到了一个新的概念,叫做“测地线距离(Geodesic Distance)”,感觉有点意思,特来跟大家分享一下。

对笔者来说,“新”的不是测地线距离概念本身(以前学黎曼几何的时候就已经接触过了),而是语义相似度领域原来也可以巧妙地构造出测地线距离出来,并在某些场景下发挥作用。如果乐意,我们还可以说这是“流形上的语义相似度”,是不是瞬间就高级了不少?

论文梗概

首先,我们简单总结一下原论文的主要内容。顾名思义,论文的主题是摘要,通常我们的无监督摘要是这样做的:假设文章由$n$个句子$t_1,t_2,\cdots,t_n$组成,给每个句子设计打分函数$s(t_i)$(经典的是tf-idf及其变体),然后挑出打分最大的若干个句子作为摘要。当然,论文做的不是简单的摘要,而是“Opinion Summarization”,这个“Opinion”,我们可以理解为实现给定的主题或者中心$c$,摘要应该倾向于抽取出与$c$相关的句子,所以打分函数应该还应该跟$c$有关,即$s(t_i, c)$。

点击阅读全文...

8 Aug

生成扩散模型漫谈(六):一般框架之ODE篇

上一篇文章《生成扩散模型漫谈(五):一般框架之SDE篇》中,我们对宋飏博士的论文《Score-Based Generative Modeling through Stochastic Differential Equations》做了基本的介绍和推导。然而,顾名思义,上一篇文章主要涉及的是原论文中SDE相关的部分,而遗留了被称为“概率流ODE(Probability flow ODE)”的部分内容,所以本文对此做个补充分享。

事实上,遗留的这部分内容在原论文的正文中只占了一小节的篇幅,但我们需要新开一篇文章来介绍它,因为笔者想了很久后发现,该结果的推导还是没办法绕开Fokker-Planck方程,所以我们需要一定的篇幅来介绍Fokker-Planck方程,然后才能请主角ODE登场。

再次反思

我们来大致总结一下上一篇文章的内容:首先,我们通过SDE来定义了一个前向过程(“拆楼”):
\begin{equation}d\boldsymbol{x} = \boldsymbol{f}_t(\boldsymbol{x}) dt + g_t d\boldsymbol{w}\label{eq:sde-forward}\end{equation}

点击阅读全文...

18 Aug

在上一篇文章《生成扩散模型漫谈(七):最优扩散方差估计(上)》中,我们介绍并推导了Analytic-DPM中的扩散模型最优方差估计结果,它是直接给出了已经训练好的生成扩散模型的最优方差的一个解析估计,实验显示该估计结果确实能有效提高扩散模型的生成质量。

这篇文章我们继续介绍Analytic-DPM的升级版,出自同一作者团队的论文《Estimating the Optimal Covariance with Imperfect Mean in Diffusion Probabilistic Models》,在官方Github中被称为“Extended-Analytic-DPM”,下面我们也用这个称呼。

结果回顾

上一篇文章是在DDIM的基础上,推出DDIM的生成过程最优方差应该是
\begin{equation}\sigma_t^2 + \gamma_t^2\bar{\sigma}_t^2\end{equation}
其中$\bar{\sigma}_t^2$是分布$p(\boldsymbol{x}_0|\boldsymbol{x}_t)$的方差,它有如下的估计结果(这里取“方差估计2”的结果):
\begin{equation}\bar{\sigma}_t^2 = \frac{\bar{\beta}_t^2}{\bar{\alpha}_t^2}\left(1 - \frac{1}{d}\mathbb{E}_{\boldsymbol{x}_t\sim p(\boldsymbol{x}_t)}\left[ \Vert\boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t)\Vert^2\right]\right)\label{eq:basic}\end{equation}

点击阅读全文...

9 Nov

CoSENT(三):作为交互式相似度的损失函数

《CoSENT(一):比Sentence-BERT更有效的句向量方案》中,笔者提出了名为“CoSENT”的有监督句向量方案,由于它是直接训练cos相似度的,跟评测目标更相关,因此通常能有着比Sentence-BERT更好的效果以及更快的收敛速度。在《CoSENT(二):特征式匹配与交互式匹配有多大差距?》中我们还比较过它跟交互式相似度模型的差异,显示它在某些任务上的效果还能直逼交互式相似度模型。

然而,当时笔者是一心想找一个更接近评测目标的Sentence-BERT替代品,所以结果都是面向有监督句向量的,即特征式相似度模型。最近笔者突然反应过来,CoSENT其实也能作为交互式相似度模型的损失函数。那么它跟标准选择交叉熵相比孰优孰劣呢?本文来补充这部分实验。

点击阅读全文...