29 Sep

第1000篇文章

后台提示,本文是科学空间的第1000篇文章。

本想写下一篇文章的,但是看到这个提示,就先瞎写个水文纪念一下。都说人老了就喜欢各种感叹,这话还真不假。看到别人高考来个感想,博客十周年了来个感想,现在第1000篇文章了也来个感想,似乎总想找点理由感叹一下一样。那今天又能扯些啥犊子呢?

1000

1000

首先,自恋一下。1000篇文章,如果要印刷下来,就算每篇文章印一页,那也能印个1000页了,相信不少人都没捧起过1000页的书吧(我还真读过,有文章为证:《哈哈,我的“〈圣经〉”到了》),我居然能写个1000篇,也是挺佩服自己的。当然,早期的文章有部分是转载的,不是全部都自己写的,不过还是坚持了不少原创内容,而且就算是转载的也是经过自己编辑整理的,不算纯Copy,所以也勉强能说的过去吧。

然后,庆幸一下。博客开始的主题是天文和科普,后来慢慢偏向了理论物理和数学,现在则偏向了机器学习,但不管怎样,总算很庆幸地在科学这条路坚持了下来。虽然没有像幼时设想的那样成为一名真正的自然科学家/数学家,但终究有点相关,闲时依然可以做做科学计算,勉强也对得起当初的梦想。

点击阅读全文...

27 Oct

TeaForN:让Teacher Forcing更有“远见”一些

Teacher Forcing是Seq2Seq模型的经典训练方式,而Exposure Bias则是Teacher Forcing的经典缺陷,这对于搞文本生成的同学来说应该是耳熟能详的事实了。笔者之前也曾写过博文《Seq2Seq中Exposure Bias现象的浅析与对策》,初步地分析过Exposure Bias问题。

Teacher Forcing示意图

Teacher Forcing示意图

本文则介绍Google新提出的一种名为“TeaForN”的缓解Exposure Bias现象的方案,来自论文《TeaForN: Teacher-Forcing with N-grams》,它通过嵌套迭代的方式,让模型能提前预估到后$N$个token(而不仅仅是当前要预测的token),其处理思路上颇有可圈可点之处,值得我们学习。

(注:为了尽量跟本博客旧文章保持一致,本文的记号与原论文的记号有所不同,请大家以理解符号含义为主,不要强记符号形式。)

点击阅读全文...

11 Nov

中国象棋

中国象棋

不知道读者有没有看过量子位年初的文章《最强写作AI竟然学会象棋和作曲,语言模型跨界操作引热议,在线求战》,里边提到有网友用GPT2模型训练了一个下国际象棋的模型。笔者一直在想,这么有趣的事情怎么可以没有中文版呢?对于国际象棋来说,其中文版自然就是中国象棋了,于是我一直有想着把它的结果在中国象棋上面复现一下。拖了大半年,在最近几天终于把这个事情完成了,在此跟大家分享一下。

象棋谱式
将军不离九宫内,士止相随不出官。
象飞四方营四角,马行一步一尖冲。
炮须隔子打一子,车行直路任西东。
唯卒只能行一步,过河横进退无踪。

点击阅读全文...

13 Nov

也来谈谈RNN的梯度消失/爆炸问题

尽管Transformer类的模型已经攻占了NLP的多数领域,但诸如LSTM、GRU之类的RNN模型依然在某些场景下有它的独特价值,所以RNN依然是值得我们好好学习的模型。而对于RNN梯度的相关分析,则是一个从优化角度思考分析模型的优秀例子,值得大家仔细琢磨理解。君不见,诸如“LSTM为什么能解决梯度消失/爆炸”等问题依然是目前流行的面试题之一...

经典的LSTM

经典的LSTM

关于此类问题,已有不少网友做出过回答,然而笔者查找了一些文章(包括知乎上的部分回答、专栏以及经典的英文博客),发现没有找到比较好的答案:有些推导记号本身就混乱不堪,有些论述过程没有突出重点,整体而言感觉不够清晰自洽。为此,笔者也尝试给出自己的理解,供大家参考。

点击阅读全文...

1 Dec

Performer:用随机投影将Attention的复杂度线性化

Attention机制的$\mathcal{O}(n^2)$复杂度是一个老大难问题了,改变这一复杂度的思路主要有两种:一是走稀疏化的思路,比如我们以往介绍过的Sparse Attention以及Google前几个月搞出来的Big Bird,等等;二是走线性化的思路,这部分工作我们之前总结在《线性Attention的探索:Attention必须有个Softmax吗?》中,读者可以翻看一下。本文则介绍一项新的改进工作Performer,出自Google的文章《Rethinking Attention with Performers》,它的目标相当霸气:通过随机投影,在不损失精度的情况下,将Attention的复杂度线性化。

各个Transformer模型的“效果-速度-显存”图,纵轴是效果,横轴是速度,圆圈的大小代表所需要的显存。理论上来说,越靠近右上方的模型越好,圆圈越小的模型越好

各个Transformer模型的“效果-速度-显存”图,纵轴是效果,横轴是速度,圆圈的大小代表所需要的显存。理论上来说,越靠近右上方的模型越好,圆圈越小的模型越好

说直接点,就是理想情况下我们可以不用重新训练模型,输出结果也不会有明显变化,但是复杂度降到了$\mathcal{O}(n)$!看起来真的是“天上掉馅饼”般的改进了,真的有这么美好吗?

点击阅读全文...

7 Dec

【龟鱼记】全陶粒的同程底滤生态缸

最近一段时间入了水族的坑,整了个60cm×40cm的超白缸来玩,主要是龟鱼共养。个人比较追求自然仿生,所以希望能在缸里建立一个相对稳定的仿生态环境。当然,其实这都是借口,根本原因是懒得换水,也不想洗过滤棉,所以就想着依靠生态系统自身的净化能力来延长换水时间。为此,参考网上的资料搞了个同程底滤,并且根据自己的经验做了一些修改。

生态缸-俯视图

生态缸-俯视图

点击阅读全文...

1 Jan

SPACES:“抽取-生成”式长文本摘要(法研杯总结)

法研杯”算是近年来比较知名的NLP赛事之一,今年是第三届,包含四个赛道,其中有一个“司法摘要”赛道引起了我们的兴趣。经过了解,这是面向法律领域裁判文书的长文本摘要生成,这应该是国内第一个公开的长文本生成任务和数据集。过去一年多以来,我们在文本生成方面都有持续的投入和探索,所以决定选择该赛道作为检验我们研究成果的“试金石”。很幸运,我们最终以微弱的优势获得了该赛道的第一名。在此,我们对我们的比赛模型做一个总结和分享。

比赛榜单截图

比赛榜单截图

在该比赛中,我们跳出了纯粹炼丹的过程,通过新型的Copy机制、Sparse Softmax等颇具通用性的新方法提升了模型的性能。整体而言,我们的模型比较简洁有效,而且可以做到端到端运行。窃以为我们的结果对工程和研究都有一定的参考价值。

点击阅读全文...

14 Dec

Mitchell近似:乘法变为加法,误差不超过1/9

今天给大家介绍一篇1962年的论文《Computer Multiplication and Division Using Binary Logarithms》,作者是John N. Mitchell,他在里边提出了一个相当有意思的算法:在二进制下,可以完全通过加法来近似完成两个数的相乘,最大误差不超过1/9。整个算法相当巧妙,更有意思的是它还有着非常简洁的编程实现,让人拍案叫绝。然而,笔者发现网上居然找不到介绍这个算法的网页,所以在此介绍一番。

你以为这只是过时的玩意?那你就错了,前不久才有人利用它发了一篇NeurIPS 2020呢!所以,确定不来了解一下吗?

点击阅读全文...