1 Jan

新年快乐!记录一下 Cool Papers 的开发体验

上周在《写了个刷论文的辅助网站:Cool Papers》中,笔者分享了一个自己开发的刷论文网站Cool Papers,并得到了一些用户的认可。然而,“使用的人越多,暴露的问题就越多”,当用户量上来后,才感觉到之前写的代码是多么不严谨,于是过去一整周都在不停地修Bug之中,直到今天下午还发现了一个Bug在修。这篇文章简单总结一下笔者在开发和修Bug过程中的感想。

Cool Papers:https://papers.cool

技术

事实上,“papers.cool”这个域名已经注册了四年多,从这可以看出笔者其实很早以前就计划着做类似Cool Papers的网站,也做过一些雏形,但之所以这个网站在四年后才正式诞生,根本原因就只有一个:技术不行。

点击阅读全文...

31 Jan

幂等生成网络IGN:试图将判别和生成合二为一的GAN

前段时间,一个名为“幂等生成网络(Idempotent Generative Network,IGN)”的生成模型引起了一定的关注。它自称是一种独立于已有的VAE、GAN、flow、Diffusion之外的新型生成模型,并且具有单步采样的特点。也许是大家苦于当前主流的扩散模型的多步采样生成过程久矣,因此任何声称可以实现单步采样的“风吹草动”都很容易吸引人们的关注。此外,IGN名称中的“幂等”一词也增加了它的神秘感,进一步扩大了人们的期待,也成功引起了笔者的兴趣,只不过之前一直有别的事情要忙,所以没来得及认真阅读模型细节。

最近闲了一点,想起来还有个IGN没读,于是重新把论文翻了出来,但阅读之后却颇感困惑:这哪里是个新模型,不就是个GAN的变种吗?跟常规GAN不同的是,它将生成器和判别器合二为一了。那这个“合二为一”是不是有什么特别的好处,比如训练更稳定?个人又感觉没有。下面将分享笔者从GAN角度理解IGN的过程和疑问。

生成对抗

关于GAN(Generative Adversarial Network,生成对抗网络),笔者前几年系统地学习过一段时间(查看GAN标签可以查看到相关文章),但近几年没有持续地关注了,因此这里先对GAN做个简单的回顾,也方便后续章节中我们对比GAN与IGN之间的异同。

点击阅读全文...

21 Feb

“闭门造车”之多模态思路浅谈(一):无损输入

这篇文章分享一下笔者关于多模态模型架构的一些闭门造车的想法,或者说一些猜测。

最近Google的Gemini 1.5和OpenAI的Sora再次点燃了不少人对多模态的热情,只言片语的技术报告也引起了大家对其背后模型架构的热烈猜测。不过,本文并非是为了凑这个热闹才发出来的,事实上其中的一些思考由来已久,最近才勉强捋顺了一下,遂想写出来跟大家交流一波,刚好碰上了两者的发布。

事先声明,“闭门造车”一词并非自谦,笔者的大模型实践本就“乏善可陈”,而多模态实践更是几乎“一片空白”,本文确实只是根据以往文本生成和图像生成的一些经验所做的“主观臆测”。

问题背景

首先简化一下问题,本文所讨论的多模态,主要指图文混合的双模态,即输入和输出都可以是图文。可能有不少读者的第一感觉是:多模态模型难道不也是烧钱堆显卡,Transformer“一把梭”,最终“大力出奇迹”吗?

点击阅读全文...

27 Feb

配置不同的学习率,LoRA还能再涨一点?

LoRA(Low-Rank Adaptation)是当前LLM的参数高效微调手段之一,此前我们在《梯度视角下的LoRA:简介、分析、猜测及推广》也有过简单讨论。这篇文章我们来学习LoRA的一个新结论:

给LoRA的两个矩阵分配不同的学习率,LoRA的效果还能进一步提升。

该结论出自最近的论文《LoRA+: Efficient Low Rank Adaptation of Large Models》(下称“LoRA+”)。咋看之下,该结论似乎没有什么特别的,因为配置不同的学习率相当于引入了新的超参数,通常来说只要引入并精调超参数都会有提升。“LoRA+”的特别之处在于,它从理论角度肯定了这个必要性,并且断定最优解必然是右矩阵的学习率大于左矩阵的学习率。简而言之,“LoRA+”称得上是理论指导训练并且在实践中确实有效的经典例子,值得仔细学习一番。

结论简析

假设预训练参数为$W_0 \in \mathbb{R}^{n\times m}$,如果使用全量参数微调,那么增量也是一个$n\times m$矩阵。为了降低参数量,LoRA将更新量约束为低秩矩阵,即设$W=W_0 + AB$,其中$A\in\mathbb{R}^{n\times r},B\in\mathbb{R}^{r\times m}$以及有$r\ll \min(n,m)$,用新的$W$替换模型原有参数,然后固定$W_0$不变,训练的时候只更新$A,B$,如下图所示:
$$\style{display: inline-block; width: 24ex; padding: 10ex 0; border: 1px solid #6C8EBF; background-color: #DAE8FC}{W_0\in\mathbb{R}^{n\times m}} \quad + \quad \style{display: inline-block; width: 8ex; padding: 10ex 0; border: 1px solid #D79B00; background-color: #FFE6CC}{A\in\mathbb{R}^{n\times r}}\quad\times\quad \style{display: inline-block; width: 24ex; padding: 3ex 0; border: 1px solid #D79B00; background-color: #FFE6CC}{B\in\mathbb{R}^{r\times m}}$$

点击阅读全文...

7 Mar

用傅里叶级数拟合一维概率密度函数

《“闭门造车”之多模态思路浅谈(一):无损输入》中我们曾提到,图像生成的本质困难是没有一个连续型概率密度的万能拟合器。当然,也不能说完全没有,比如高斯混合模型(GMM)理论上就是可以拟合任意概率密度,就连GAN本质上也可以理解为混合了无限个高斯模型的GMM。然而,GMM尽管理论上的能力是足够的,但它的最大似然估计会很困难,尤其是通常不适用基于梯度的优化器,这限制了它的使用场景。

近日,Google的一篇新论文《Fourier Basis Density Model》针对一维情形,提出了一个新的解决方案——用傅里叶级数来拟合。论文的分析过程颇为有趣,构造形式也很是巧妙,值得学习一番。

问题简述

可能有读者质疑:只研究一维情形有什么价值?确实,如果只考虑图像生成场景,那可能真的价值有限,但一维概率密度估计本身有它的应用价值,如数据的有损压缩,所以它依然是一个值得研究的主题。再者,即便我们需要研究多维的概率密度,也可以通过自回归的方式转化为多个一维的条件概率密度来估计。最后,这个分析和构造过程本身就很值得回味,所以哪怕是仅仅作为一道数学分析题来练习也是相当有益的。

点击阅读全文...

17 Apr

上一篇文章《生成扩散模型漫谈(二十二):信噪比与大图生成(上)》中,我们介绍了通过对齐低分辨率的信噪比来改进noise schedule,从而改善直接在像素空间训练的高分辨率图像生成(大图生成)的扩散模型效果。而这篇文章的主角同样是信噪比和大图生成,但做到了更加让人惊叹的事情——直接将训练好低分辨率图像的扩散模型用于高分辨率图像生成,不用额外的训练,并且效果和推理成本都媲美直接训练的大图模型!

这个工作出自最近的论文《Upsample Guidance: Scale Up Diffusion Models without Training》,它巧妙地将低分辨率模型上采样作为引导信号,并结合了CNN对纹理细节的平移不变性,成功实现了免训练高分辨率图像生成。

思想探讨

我们知道,扩散模型的训练目标是去噪(Denoise,也是DDPM的第一个D)。按我们的直觉,去噪这个任务应该是分辨率无关的,换句话说,理想情况下低分辨率图像训练的去噪模型应该也能用于高分辨率图像去噪,从而低分辨率的扩散模型应该也能直接用于高分辨率图像生成。

点击阅读全文...

1 May

今天我们分享一下论文《Score identity Distillation: Exponentially Fast Distillation of Pretrained Diffusion Models for One-Step Generation》,顾名思义,这是一篇探讨如何更快更好地蒸馏扩散模型的新论文。

即便没有做过蒸馏,大家应该也能猜到蒸馏的常规步骤:随机采样大量输入,然后用扩散模型生成相应结果作为输出,用这些输入输出作为训练数据对,来监督训练一个新模型。然而,众所周知作为教师的原始扩散模型通常需要多步(比如1000步)迭代才能生成高质量输出,所以且不论中间训练细节如何,该方案的一个显著缺点是生成训练数据太费时费力。此外,蒸馏之后的学生模型通常或多或少都有效果损失。

有没有方法能一次性解决这两个缺点呢?这就是上述论文试图要解决的问题。

点击阅读全文...

24 May

重温SSM(一):线性系统和HiPPO矩阵

前几天,笔者看了几篇介绍SSM(State Space Model)的文章,才发现原来自己从未认真了解过SSM,于是打算认真去学习一下SSM的相关内容,顺便开了这个新坑,记录一下学习所得。

SSM的概念由来已久,但这里我们特指深度学习中的SSM,一般认为其开篇之作是2021年的S4,不算太老,而SSM最新最火的变体大概是去年的Mamba。当然,当我们谈到SSM时,也可能泛指一切线性RNN模型,这样RWKVRetNet还有此前我们在《Google新作试图“复活”RNN:RNN能否再次辉煌?》介绍过的LRU都可以归入此类。不少SSM变体致力于成为Transformer的竞争者,尽管笔者并不认为有完全替代的可能性,但SSM本身优雅的数学性质也值得学习一番。

尽管我们说SSM起源于S4,但在S4之前,SSM有一篇非常强大的奠基之作《HiPPO: Recurrent Memory with Optimal Polynomial Projections》(简称HiPPO),所以本文从HiPPO开始说起。

点击阅读全文...