13 Nov

【生活杂记】炒锅的尽头是铁锅

铁锅(网络图)

铁锅(网络图)

很多会下厨的同学估计都纠结过一件事情,那就是炒锅的选择。

对于炒锅的纠结,归根结底是不粘与方便的权衡。最简单的不粘锅自然是带涂层的不粘锅,如果家里的热源只有电磁炉,并且炒菜习惯比较温和,那么涂层不粘锅往往是最佳选择了。不过,一旦有了明火的燃气灶,又或者是比较喜欢爆炒,那么涂层锅可能就不是那么适合了,毕竟温度过高涂层总有脱落的风险,此时一般就考虑无涂层不粘锅。

无涂层不粘锅也有五花八门的选择,比如朴素的铁锅、带蜂窝纹的不锈钢锅、有钛锅、纯钛锅等等,价格大体上也单调递增。不过用到最后,我觉得大部分人都会回归到朴素的铁锅。

点击阅读全文...

20 Sep

自然数集中 N = ab + c 时 a + b + c 的最小值

前天晚上微信群里有群友提出了一个问题:

对于一个任意整数$N > 100$,求一个近似算法,使得$N=a\times b+c$(其中$a,b,c$都是非负整数),并且令$a+b+c$尽量地小。

初看这道题,笔者第一感觉就是“这还需要算法?”,因为看上去自由度太大了,应该能求出个解析解才对,于是简单分析了一下之后就给出了个“答案”,结果很快就有群友给出了反例。这时,笔者才意识到这题并非那么平凡,随后正式推导了一番,总算得到了一个可行的算法。正当笔者以为这个问题已经结束时,另一个数学群的群友精妙地构造了新的参数化,证明了算法的复杂度还可以进一步下降!

整个过程波澜起伏,让笔者获益匪浅,遂将过程记录在此,与大家分享。

点击阅读全文...

25 Dec

写了个刷论文的辅助网站:Cool Papers

写在开头

一直以来,笔者都有日刷Arxiv的习惯,以求尽可能跟上领域内最新成果,并告诫自己“不进则退”。之前也有不少读者问我是怎么刷Arxiv的、有什么辅助工具等,但事实上,在很长的时间里,笔者都是直接刷Arxiv官网,并且没有用任何算法过滤,都是自己一篇篇过的。这个过程很枯燥,但并非不能接受,之所以不用算法初筛,主要还是担心算法漏召,毕竟“刷”就是为了追新,一旦算法漏召就“错失先机”了。

自从Kimi Chat发布后,笔者就一直计划着写一个辅助网站结合Kimi来加速刷论文的过程。最近几个星期稍微闲了一点,于是在GPT4、Kimi的帮助下,初步写成了这个网站,并且经过几天的测试和优化后,已经逐步趋于稳定,于是正式邀请读者试用。

Cool Papers:https://papers.cool

点击阅读全文...

9 Jan

局部余弦相似度大,全局余弦相似度一定也大吗?

在分析模型的参数时,有些情况下我们会将模型的所有参数当成一个整体的向量,有些情况下我们则会将不同的参数拆开来看。比如,一个7B大小的LLAMA模型所拥有的70亿参数量,有时候我们会将它当成“一个70亿维的向量”,有时候我们会按照模型的实现方式将它看成“数百个不同维度的向量”,最极端的情况下,我们也会将它看成是“七十亿个1维向量”。既然有不同的看待方式,那么当我们要算一些统计指标时,也就会有不同的计算方式,即局部计算和全局计算,这引出了局部计算的指标与全局计算的指标有何关联的问题。

本文我们关心两个向量的余弦相似度。如果两个大向量的维度被拆成了若干组,同一组对应的子向量余弦相似度都很大,那么两个大向量的余弦相似度是否一定就大呢?答案是否定的。特别地,这还跟著名的“辛普森悖论”有关。

问题背景

这个问题源于笔者对优化器的参数增量导致的损失函数变化量的分析。具体来说,假设优化器的更新规则是:
\begin{equation}\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta_t \boldsymbol{u}_t\end{equation}

点击阅读全文...

15 Aug

让MathJax更好地兼容谷歌翻译和延时加载

很早之前,就有读者提出希望把Cool Papers上面的数学公式渲染一下,因为很多偏数学的论文,它们的摘要甚至标题上都带有LaTeX代码写的数学公式,如果不把这些公式渲染出来,那么看上去就像是一堆乱码,确实会比较影响阅读体验。然而,之前的测试显示,负责渲染公式的MathJax跟谷歌翻译和延时加载都不大兼容,所以尽管需求存在已久,但笔者一直没有把它加上去。

不过好消息是,经过反复查阅和调试,这两天笔者总算把兼容性问题解决了,所以现在大家看到的Cool Papers已经能够渲染数学公式了。这篇文章总结一下解决方案,供大家参考。

摘要带有公式的论文

摘要带有公式的论文

点击阅读全文...