27 Feb

Muon续集:为什么我们选择尝试Muon?

本文解读一下我们最新的技术报告《Muon is Scalable for LLM Training》,里边分享了我们之前在《Muon优化器赏析:从向量到矩阵的本质跨越》介绍过的Muon优化器的一次较大规模的实践,并开源了相应的模型(我们称之为“Moonlight”,目前是一个3B/16B的MoE模型)。我们发现了一个比较惊人的结论:在我们的实验设置下,Muon相比Adam能够达到将近2倍的训练效率。

Muon的Scaling Law及Moonlight的MMLU表现

Muon的Scaling Law及Moonlight的MMLU表现

优化器的工作说多不多,但说少也不少,为什么我们会选择Muon来作为新的尝试方向呢?已经调好超参的Adam优化器,怎么快速切换到Muon上进行尝试呢?模型Scale上去之后,Muon与Adam的性能效果差异如何?接下来将分享我们的思考过程。

点击阅读全文...

5 Mar

MoE环游记:3、换个思路来分配

这篇文章我们继续探讨MoE的负载均衡问题。在上一篇文章《MoE环游记:2、不患寡而患不均》中,我们主要讨论了通过Aux Loss来促进负载均衡的思路。Aux Loss固然简单直观,但它也有一个明显的缺点——权重不好调——调低了无法促进均衡,调高了容易损害LM Loss,所以业界一直有寻找替代方案的尝试。

本文要分享的是名为“Loss-Free”的方案,由DeepSeek在《Auxiliary-Loss-Free Load Balancing Strategy for Mixture-of-Experts》提出。和DeepSeek众多耀眼的开源作品相比,这篇论文也许不算起眼,但在笔者看来,它潜在的学术影响力可能远超其他工作,因为所提方法不仅简单有效,而且极具普适性,堪称经典。

方法大意

面对负载不均衡,Aux Loss的应对思路是通过额外的损失引导Router给出均衡的打分,而Loss-Free的想法则是换个新的分配思路,即不改变Router现有打分结果,而是改变$\mathop{\text{argtop}}_k \boldsymbol{\rho}$这个分配方式。

点击阅读全文...

13 Mar

初探muP:超参数的跨模型尺度迁移规律

众所周知,完整训练一次大型LLM的成本是昂贵的,这就决定了我们不可能直接在大型LLM上反复测试超参数。一个很自然的想法是希望可以在同结构的小模型上仔细搜索超参数,找到最优组合后直接迁移到大模型上。尽管这个想法很朴素,但要实现它并不平凡,它需要我们了解常见的超参数与模型尺度之间的缩放规律,而muP正是这个想法的一个实践。

muP,有时也写$\mu P$,全名是Maximal Update Parametrization,出自论文《Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer》,随着LLM训练的普及,它逐渐已经成为了科学炼丹的事实标配之一。

方法大意

在接入主题之前,必须先吐槽一下muP原论文写得实在太过晦涩,并且结论的表达也不够清晰,平白增加了不少理解难度,所以接下来笔者尽量以一种(自认为)简明扼要的方式来复现muP的结论。

点击阅读全文...

24 Mar

高阶muP:更简明但更高明的谱条件缩放

在文章《初探muP:超参数的跨模型尺度迁移规律》中,我们基于前向传播、反向传播、损失增量和特征变化的尺度不变性推导了muP(Maximal Update Parametrization)。可能对于部分读者来说,这一过程还是显得有些繁琐,但实际上它比原始论文已经明显简化。要知道,我们是在单篇文章内相对完整地介绍的muP,而muP的论文实际上是作者Tensor Programs系列论文的第5篇!

不过好消息是,作者在后续的研究《A Spectral Condition for Feature Learning》中,发现了一种新的理解方式(下称“谱条件”),它比muP的原始推导和笔者的推导都更加直观和简洁,但却能得到比muP更丰富的结果,可谓muP的高阶版本,简明且不失高明的代表作。

准备工作

顾名思义,谱条件(Spectral Condition)跟谱范数(Spectral Norm)相关,它的出发点是谱范数的一个基本不等式:
\begin{equation}\Vert\boldsymbol{x}\boldsymbol{W}\Vert_2\leq \Vert\boldsymbol{x}\Vert_2 \Vert\boldsymbol{W}\Vert_2\label{neq:spec-2}\end{equation}

点击阅读全文...