27 Aug

自己实现了一个bert4keras

分享个人实现的bert4keras:

这是笔者重新实现的keras版的bert,致力于用尽可能清爽的代码来实现keras下调用bert。

说明

目前已经基本实现bert,并且能成功加载官方权重,经验证模型输出跟keras-bert一致,大家可以放心使用。

本项目的初衷是为了修改、定制上的方便,所以可能会频繁更新。

因此欢迎star,但不建议fork,因为你fork下来的版本可能很快就过期了。

点击阅读全文...

20 Aug

开源一版DGCNN阅读理解问答模型(Keras版)

去年写过《基于CNN的阅读理解式问答模型:DGCNN》,介绍了一个纯卷积的简单的问答模型。当时是用Tensorflow实现的,而且没有开源,这几天抽空用Keras复现了一下,决定开源。

模型综述

关于DGCNN的基本介绍,这里不再赘述。本文的模型并不是之前模型的重复实现,而是有所改动,这里只介绍一下被改动的地方。

1、这里放出的模型,线下验证集的分数大概是0.72(之前大约是0.75);

2、本次模型以字为单位,使用笔者之前探索出来的“字词混合Embedding”(之前是以词为单位);

3、本次模型完全去掉了人工特征(之前用了8个人工特征);

4、本次模型去掉了位置Embedding(之前将位置Embedding拼接到输入上);

5、模型架构和训练细节有所微调。

点击阅读全文...

9 Aug

seq2seq之双向解码

在文章《玩转Keras之seq2seq自动生成标题》中我们已经基本探讨过seq2seq,并且给出了参考的Keras实现。

本文则将这个seq2seq再往前推一步,引入双向的解码机制,它在一定程度上能提高生成文本的质量(尤其是生成较长文本时)。本文所介绍的双向解码机制参考自《Synchronous Bidirectional Neural Machine Translation》,最后笔者也是用Keras实现的。

Seq2Seq的双向解码机制图示

背景介绍

研究过seq2seq的读者都知道,常见的seq2seq的解码过程是从左往右逐字(词)生成的,即根据encoder的结果先生成第一个字;然后根据encoder的结果以及已经生成的第一个字,来去生成第二个字;再根据encoder的结果和前两个字,来生成第三个词;依此类推。总的来说,就是在建模如下概率分解
\begin{equation}p(Y|X)=p(y_1|X)p(y_2|X,y_1)p(y_3|X,y_1,y_2)\cdots\label{eq:p}\end{equation}

点击阅读全文...

30 Jul

Keras实现两个优化器:Lookahead和LazyOptimizer

最近用Keras实现了两个优化器,也算是有点实现技巧,遂放在一起写篇文章简介一下(如果只有一个的话我就不写了)。这两个优化器的名字都挺有意思的,一个是look ahead(往前看?),一个是lazy(偷懒?),难道是两个完全不同的优化思路么?非也非也~只能说发明者们起名字太有创意了。

Lookahead

首先登场的是Lookahead优化器,它源于论文《Lookahead Optimizer: k steps forward, 1 step back》,是最近才提出来的优化器,有意思的是大牛Hinton和Adam的作者之一Jimmy Ba也出现在了论文作者列表当中,有这两个大神加持,这个优化器的出现便吸引了不少目光。

点击阅读全文...

27 Jul

为节约而生:从标准Attention到稀疏Attention

attention, please!

attention, please!

如今NLP领域,Attention大行其道,当然也不止NLP,在CV领域Attention也占有一席之地(Non Local、SAGAN等)。在18年初《〈Attention is All You Need〉浅读(简介+代码)》一文中,我们就已经讨论过Attention机制,Attention的核心在于$\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V}$三个向量序列的交互和融合,其中$\boldsymbol{Q},\boldsymbol{K}$的交互给出了两两向量之间的某种相关度(权重),而最后的输出序列则是把$\boldsymbol{V}$按照权重求和得到的。

显然,众多NLP&CV的成果已经充分肯定了Attention的有效性。本文我们将会介绍Attention的一些变体,这些变体的共同特点是——“为节约而生”——既节约时间,也节约显存

背景简述

《Attention is All You Need》一文讨论的我们称之为“乘性Attention”,目前用得比较广泛的也就是这种Attention:
\begin{equation}Attention(\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V}) = softmax\left(\frac{\boldsymbol{Q}\boldsymbol{K}^{\top}}{\sqrt{d_k}}\right)\boldsymbol{V}\end{equation}

点击阅读全文...

16 Jul

“让Keras更酷一些!”:层中层与mask

这一篇“让Keras更酷一些!”将和读者分享两部分内容:第一部分是“层中层”,顾名思义,是在Keras中自定义层的时候,重用已有的层,这将大大减少自定义层的代码量;另外一部分就是应读者所求,介绍一下序列模型中的mask原理和方法。

层中层

《“让Keras更酷一些!”:精巧的层与花式的回调》一文中我们已经介绍过Keras自定义层的基本方法,其核心步骤是定义buildcall两个函数,其中build负责创建可训练的权重,而call则定义具体的运算。

拒绝重复劳动

经常用到自定义层的读者可能会感觉到,在自定义层的时候我们经常在重复劳动,比如我们想要增加一个线性变换,那就要在build中增加一个kernelbias变量(还要自定义变量的初始化、正则化等),然后在call里边用K.dot来执行,有时候还需要考虑维度对齐的问题,步骤比较繁琐。但事实上,一个线性变换其实就是一个不加激活函数的Dense层罢了,如果在自定义层时能重用已有的层,那显然就可以大大节省代码量了。

点击阅读全文...

8 Jul

用时间换取效果:Keras梯度累积优化器

现在Keras中你也可以用小的batch size实现大batch size的效果了——只要你愿意花$n$倍的时间,可以达到$n$倍batch size的效果,而不需要增加显存。

Github地址:https://github.com/bojone/accum_optimizer_for_keras

扯淡

在一两年之前,做NLP任务都不用怎么担心OOM问题,因为相比CV领域的模型,其实大多数NLP模型都是很浅的,极少会显存不足。幸运或者不幸的是,Bert出世了,然后火了。Bert及其后来者们(GPT-2、XLNET等)都是以足够庞大的Transformer模型为基础,通过足够多的语料预训练模型,然后通过fine tune的方式来完成特定的NLP任务。

点击阅读全文...

29 Jun

基于Bert的NL2SQL模型:一个简明的Baseline

在之前的文章《当Bert遇上Keras:这可能是Bert最简单的打开姿势》中,我们介绍了基于微调Bert的三个NLP例子,算是体验了一把Bert的强大和Keras的便捷。而在这篇文章中,我们再添一个例子:基于Bert的NL2SQL模型。

NL2SQL的NL也就是Natural Language,所以NL2SQL的意思就是“自然语言转SQL语句”,近年来也颇多研究,它算是人工智能领域中比较实用的一个任务。而笔者做这个模型的契机,则是今年我司举办的首届“中文NL2SQL挑战赛”

首届中文NL2SQL挑战赛,使用金融以及通用领域的表格数据作为数据源,提供在此基础上标注的自然语言与SQL语句的匹配对,希望选手可以利用数据训练出可以准确转换自然语言到SQL的模型。

这个NL2SQL比赛算是今年比较大型的NLP赛事了,赛前投入了颇多人力物力进行宣传推广,比赛的奖金也颇丰富,唯一的问题是NL2SQL本身算是偏冷门的研究领域,所以注定不会太火爆,为此主办方也放出了一个Baseline,基于Pytorch写的,希望能降低大家的入门难度。

抱着“Baseline怎么能少得了Keras版”的心态,我抽时间自己用Keras做了做这个比赛,为了简化模型并且提升效果也加载了预训练的Bert模型,最终形成此文。

点击阅读全文...