费曼积分法——积分符号内取微分(2)
By 苏剑林 | 2012-06-12 | 102922位读者 |上一篇文章我对“费曼积分法”做了一个简单的介绍,并通过举例来初步展示了它的操作步骤。但是,要了解一个方法,除了知道它能够干什么之外,还必须了解它的原理和方法,这样我们才能够更好地掌握它。因此,我们需要建立“积分符号内取微分”的一般理论,为进一步的应用奠基。
一般原理
我们记
G(a)=∫n(a)m(a)f(x,a)dx
在这里,f(x,a)是带有参数a的关于x的函数,而积分区间是关于参数a的两个函数,这样的积分也叫变限积分,可以理解为是普通定积分的推广。我们记F(x,a)为f(x,a)的原函数,也就是说∂F(x,a)∂x=f(x,a),那么按照微积分基本定理,我们就有:
G(a)=F(n(a),a)−F(m(a),a)
对a求导:
dG(a)da=∂F(n(a),a)∂n(a)×dn(a)da+∂F(n(a),a)∂a−∂F(m(a),a)∂m(a)×dm(a)da−∂F(m(a),a)∂a
这个这么长的式子实则告诉我们:
G′(a)=∫n(a)m(a)∂f(x,a)∂adx+f(n(a),a)×dn(a)da−f(m(a),a)×dm(a)da
这就是“积分符号内取微分”的法则!如果m,n是一个常数,那么直接变成了
G′(a)=∫nm∂f(x,a)∂adx
“费曼积分法”之所以能够奏效,关键是“求导”这一步看似化简为繁,实则在求导过程中让许多繁琐的东西暂时消失了,得到一个相对简单的结果,然后再还原,这在某种意义上来说是分步处理的思想。
更多的例子
为了进一步说明费曼积分法的应用,下面BoJone将展示更多的例子,需要说明的是,前面展示的一个例子是运算量相对较低的,而一般的定积分运算往往都比较复杂,不论是哪种方法,都要借助某个变换将其变成我们熟悉的积分,因此,需要积累一定的定积分结果,知道一些基本的可积函数等等。(当然啦,必要时还可以查《积分表》 )
另一方面,费曼积分法的核心之处在于参数的选择,并不是每一个要求的积分都是带有参数的,比如∫π20xtanxdx,而且即使给出了,给出的参数也不一定符合要求,因此,我们需要逐渐领悟怎么去为被积函数“改装”成带有参数的形式,而原定积分则作为参数取某个特殊值时的情况。至于怎么增加参数,参数的形式怎么确定,BoJone对此也是一知半解,有待进一步提高。
例子1:
∫π20xtanxdx
这还算时一种比较常见的形式,它的基本形状为∫xf(x)dx,我们的办法是试着(每一次运算都是一次尝试)将它改装成∫f−1(a×f(x))f(x)dx,其中f−1(x)是f(x)的反函数,原积分就等价于a=1时的情况。为什么要这样做呢?只要你将它一求导就会明白了^_^
对于这道题目,我们将它变成
G(a)=∫π20arctan(a×tanx)tanxdxf(x,a)=arctan(a×tanx)tanx
那么
∂f(x,a)∂a=1a2tan2x+1=cos2xa2+(1−a2)cos2x=11−a2[1−2a2(1+a2)+(1−a2)cos2x]
等等等等等等,首先得弄清楚我们究竟在干什么,我们究竟想干什么。求导后的下一步就是要积分,什么形式的积分可以被简单地积分出来呢?查查《积分表》就可以知道,形式∫1a+b×cosxdx类型的积分是可以积分出来的,因此我们要尽量将它往这个形式靠拢!
最终得到:
G′(a)=11−a2∫π20[1−2a2(1+a2)+(1−a2)cos2x]dx=11−a2[x−a×arctan(a×tanx)]|π/20=11−a2(π2−a×π2)=π2(1+a)
再积分就得到
G(a)=π2[ln(1+a)+C]
当a=0的时候,f(x,a)=f(x,0)=0,所以G(0)=∫π200dx=0,由此得出C=0。
顺便提及一下,关于首步的积分(对x变量的)结果,有经验的读者会从
1a2tan2x+1
得到灵感,猜测原函数会是arctan(a×tanx)的形式,对它求导,我们会发现:
darctan(a×tanx)dx=aa2tan2x+1×1cos2x=aa2tan2x+1×(1+tan2x)=aa2tan2x+1×(1a2+tan2x+1−1a2)=1a+a−1/aa2tan2x+1
这与要求的只相差一个常数,所以可以很快得出原函数11−a2[x−a×arctan(a×tanx)]了。当然,这对数学思维有一定的要求。
说明:也许读者看到上面的过程后会感觉很头痛,疑问:这哪里简单了,明明这么复杂!其实不论用哪种方法,微积分运算的过程都是相当复杂的,关键是一个算法的操作性和可行性。换句话说,我们知道可行了,就可以按部就班地算下去。运算过程的繁琐不是一个问题的难度所在,好问题的难度在于:如何得到这一个灵感,让我们得到这一个过程!
为了使文章不至于过长,更多的例子就放在下一篇文章了。
转载到请包括本文地址:https://kexue.fm/archives/1619
更详细的转载事宜请参考:《科学空间FAQ》
如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。
如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!
如果您需要引用本文,请参考:
苏剑林. (Jun. 12, 2012). 《费曼积分法——积分符号内取微分(2) 》[Blog post]. Retrieved from https://kexue.fm/archives/1619
@online{kexuefm-1619,
title={费曼积分法——积分符号内取微分(2)},
author={苏剑林},
year={2012},
month={Jun},
url={\url{https://kexue.fm/archives/1619}},
}
December 18th, 2012
好像复制不了那些符号额,
就是文中例1中的“那么”中的那个将分子中三角函数弄掉的那一步因式分解不怎么自然啊,一般人想不到(至少我没想到)。或者说,LZ有什么自然一点的思路吗?
你是指这一步吧?
11−a2[1−2a2(1+a2)+(1−a2)cos2x]
1.后边已经提到了,我们应当有这样的理论基础(或者说积累),即∫1a+b×cosxdx类型的积分是可以积出来的。
2.另一方面,也应该有这样的一种直觉,即单单分子具有自变量的情况会比分子分母都有自变量时容易处理,所以也要这样转化。
哦 好吧 看来我做的题目太少了
December 18th, 2012
邮箱ripplespp@gmail.com
December 18th, 2012
有一点不太理解,求G(a)时为什么,自变量又变回x而不是a了
G(a)本来就是关于自变量x的积分式,对a求导后它还是x的积分式呀,只不过被积函数变成了原来的被积函数对a的导数而已呀。
提示一下:你右击一下公式就会发现怎么复制公式了。要把latex代码放到两个$之间。
哦 这样啊 懂了 谢谢啊
June 15th, 2018
"对它求导,我们会发现:"之后的一步求导应该是对原函数的求导,这里有点问题。
感谢,已经修正~
December 10th, 2018
对G(a)求导那一个很长的式子是怎么得的?
January 2nd, 2019
复合函数微分法
March 13th, 2019
您好,请问“得到灵感,猜测原函数会是arctan(a×tanx)的形式,对它求导,我们会发现:”这句话后式子的求导结果是否少乘了一个a呢?
“这与要求的只相差一个常数,所以可以很快得出原函数”后的原函数中,arctan(a*tanx)前面也少乘了一个a。
感谢指出错误,你是对的~已经修正,顺便修改了一下旧排版。
November 21st, 2019
对g(a)求导不应该是1/(tanx*(1+(atanx)²)?a
看不懂你写什么,不过我的计算结果是没错的。
December 6th, 2019
你好,我这里有道题目想问下用这个费曼积分法应该怎么做。求函数(e^cos(x))*sin(sin(x))/x在0到正无穷的定积分
想了下,没想出来~
April 20th, 2020
讲得很好,这是高数含参变量微分的内容了。