17 Jan

细水长flow之TARFLOW:流模型满血归来?

不知道还有没有读者对这个系列有印象?这个系列取名“细水长flow”,主要介绍flow模型的相关工作,起因是当年(2018年)OpenAI发布了一个新的流模型Glow,在以GAN为主流的当时来说着实让人惊艳了一番。但惊艳归惊艳,事实上在相当长的时间内,Glow及后期的一些改进在生成效果方面都是比不上GAN的,更不用说现在主流的扩散模型了。

不过局面可能要改变了,上个月的论文《Normalizing Flows are Capable Generative Models》提出了新的流模型TARFLOW,它在几乎在所有的生成任务效果上都逼近了当前SOTA,可谓是流模型的“满血”回归。

TARFLOW的生成效果

TARFLOW的生成效果

点击阅读全文...

6 Sep

“闭门造车”之多模态思路浅谈(三):位置编码

在前面的文章中,我们曾表达过这样的观点:多模态LLM相比纯文本LLM的主要差异在于,前者甚至还没有形成一个公认为标准的方法论。这里的方法论,不仅包括之前讨论的生成和训练策略,还包括一些基础架构的设计,比如本文要谈的“多模态位置编码”。

对于这个主题,我们之前在《Transformer升级之路:17、多模态位置编码的简单思考》就已经讨论过一遍,并且提出了一个方案(RoPE-Tie)。然而,当时笔者对这个问题的思考仅处于起步阶段,存在细节考虑不周全、认识不够到位等问题,所以站在现在的角度回看,当时所提的方案与完美答案还有明显的距离。

因此,本文我们将自上而下地再次梳理这个问题,并且给出一个自认为更加理想的结果。

多模位置

多模态模型居然连位置编码都没有形成共识,这一点可能会让很多读者意外,但事实上确实如此。对于文本LLM,目前主流的位置编码是RoPE(RoPE就不展开介绍了,假设读者已经熟知),更准确来说是RoPE-1D,因为原始设计只适用于1D序列。后来我们推导了RoPE-2D,这可以用于图像等2D序列,按照RoPE-2D的思路我们可以平行地推广到RoPE-3D,用于视频等3D序列。

点击阅读全文...

1 Sep

Decoder-only的LLM为什么需要位置编码?

众所周知,目前主流的LLM,都是基于Causal Attention的Decoder-only模型(对此我们在《为什么现在的LLM都是Decoder-only的架构?》也有过相关讨论),而对于Causal Attention,已经有不少工作表明它不需要额外的位置编码(简称NoPE)就可以取得非平凡的结果。然而,事实是主流的Decoder-only LLM都还是加上了额外的位置编码,比如RoPE、ALIBI等。

那么问题就来了:明明说了不加位置编码也可以,为什么主流的LLM反而都加上了呢?不是说“多一事不如少一事”吗?这篇文章我们从三个角度给出笔者的看法:

1、位置编码对于Attention的作用是什么?

2、NoPE的Causal Attention是怎么实现位置编码的?

3、NoPE实现的位置编码有什么不足?

点击阅读全文...

29 May

Transformer升级之路:18、RoPE的底数选择原则

我们知道,在RoPE中频率的计算公式为$\theta_i = b^{-2i/d}$,底数$b$默认值为10000。目前Long Context的主流做法之一是,先在$b=10000$上用短文本预训练,然后调大$b$并在长文本微调,其出发点是《Transformer升级之路:10、RoPE是一种β进制编码》里介绍的NTK-RoPE,它本身有较好长度外推性,换用更大的$b$再微调相比不加改动的微调,起始损失更小,收敛也更快。该过程给人的感觉是:调大$b$完全是因为“先短后长”的训练策略,如果一直都用长文本训练似乎就没必要调大$b$了?

上周的论文《Base of RoPE Bounds Context Length》试图回答这个问题,它基于一个期望性质研究了$b$的下界,由此指出更大的训练长度本身就应该选择更大的底数,与训练策略无关。整个分析思路颇有启发性,接下来我们一起来品鉴一番。

点击阅读全文...

13 May

缓存与效果的极限拉扯:从MHA、MQA、GQA到MLA

前几天,幻方发布的DeepSeek-V2引起了大家的热烈讨论。首先,最让人哗然的是1块钱100万token的价格,普遍比现有的各种竞品API便宜了两个数量级,以至于有人调侃“这个价格哪怕它输出乱码,我也会认为这个乱码是一种艺术”;其次,从模型的技术报告看,如此便宜的价格背后的关键技术之一是它新提出的MLA(Multi-head Latent Attention),这是对GQA的改进,据说能比GQA更省更好,也引起了读者的广泛关注。

接下来,本文将跟大家一起梳理一下从MHA、MQA、GQA到MLA的演变历程,并着重介绍一下MLA的设计思路。

MHA

MHA(Multi-Head Attention),也就是多头注意力,是开山之作《Attention is all you need》所提出的一种Attention形式,可以说它是当前主流LLM的基础工作。在数学上,多头注意力MHA等价于多个独立的单头注意力的拼接,假设输入的(行)向量序列为$\boldsymbol{x}_1,\boldsymbol{x}_2,\cdots,\boldsymbol{x}_l$,其中$\boldsymbol{x}_i\in\mathbb{R}^d$,那么MHA可以形式地记为

点击阅读全文...

29 Mar

在这个系列的第二篇文章《Transformer升级之路:2、博采众长的旋转式位置编码》中,笔者提出了旋转位置编码(RoPE)——通过绝对位置的形式实现相对位置编码的方案。一开始RoPE是针对一维序列如文本、音频等设计的(RoPE-1D),后来在《Transformer升级之路:4、二维位置的旋转式位置编码》中我们将它推广到了二维序列(RoPE-2D),这适用于图像的ViT。然而,不管是RoPE-1D还是RoPE-2D,它们的共同特点都是单一模态,即纯文本或者纯图像输入场景,那么对于多模态如图文混合输入场景,RoPE该做如何调整呢?

笔者搜了一下,发现鲜有工作讨论这个问题,主流的做法似乎都是直接展平所有输入,然后当作一维输入来应用RoPE-1D,因此连RoPE-2D都很少见。且不说这种做法会不会成为图像分辨率进一步提高时的效果瓶颈,它终究是显得不够优雅。所以,接下来我们试图探寻两者的一个自然结合。

旋转位置

RoPE名称中的“旋转”一词,来源于旋转矩阵$\boldsymbol{\mathcal{R}}_n=\begin{pmatrix}\cos n\theta & -\sin n\theta\\ \sin n\theta & \cos n\theta\end{pmatrix}$,它满足
\begin{equation}\boldsymbol{\mathcal{R}}_m^{\top}\boldsymbol{\mathcal{R}}_n=\boldsymbol{\mathcal{R}}_{n-m}\end{equation}

点击阅读全文...

18 Mar

时空之章:将Attention视为平方复杂度的RNN

近年来,RNN由于其线性的训练和推理效率,重新吸引了不少研究人员和用户的兴趣,隐约有“文艺复兴”之势,其代表作有RWKVRetNetMamba等。当将RNN用于语言模型时,其典型特点就是每步生成都是常数的空间复杂度和时间复杂度,从整个序列看来就是常数的空间复杂度和线性的时间复杂度。当然,任何事情都有两面性,相比于Attention动态增长的KV Cache,RNN的常数空间复杂度通常也让人怀疑记忆容量有限,在Long Context上的效果很难比得上Attention。

在这篇文章中,我们表明Causal Attention可以重写成RNN的形式,并且它的每一步生成理论上也能够以$\mathcal{O}(1)$的空间复杂度进行(代价是时间复杂度非常高,远超平方级)。这表明Attention的优势(如果有的话)是靠计算堆出来的,而不是直觉上的堆内存,它跟RNN一样本质上都是常数量级的记忆容量(记忆瓶颈)。

点击阅读全文...

21 Feb

“闭门造车”之多模态思路浅谈(一):无损输入

这篇文章分享一下笔者关于多模态模型架构的一些闭门造车的想法,或者说一些猜测。

最近Google的Gemini 1.5和OpenAI的Sora再次点燃了不少人对多模态的热情,只言片语的技术报告也引起了大家对其背后模型架构的热烈猜测。不过,本文并非是为了凑这个热闹才发出来的,事实上其中的一些思考由来已久,最近才勉强捋顺了一下,遂想写出来跟大家交流一波,刚好碰上了两者的发布。

事先声明,“闭门造车”一词并非自谦,笔者的大模型实践本就“乏善可陈”,而多模态实践更是几乎“一片空白”,本文确实只是根据以往文本生成和图像生成的一些经验所做的“主观臆测”。

问题背景

首先简化一下问题,本文所讨论的多模态,主要指图文混合的双模态,即输入和输出都可以是图文。可能有不少读者的第一感觉是:多模态模型难道不也是烧钱堆显卡,Transformer“一把梭”,最终“大力出奇迹”吗?

点击阅读全文...