exp(x)在x=0处的偶次泰勒展开式总是正的
By 苏剑林 | 2020-11-24 | 35898位读者 | 引用刚看到一个有意思的结论:
对于任意实数$x$及偶数$n$,总有$\sum\limits_{k=0}^n \frac{x^k}{k!} > 0$,即$e^x$在$x=0$处的偶次泰勒展开式总是正的。
下面我们来看一下这个结论的证明,以及它在寻找softmax替代品中的应用。
证明过程
看上去这是一个很强的结果,证明会不会很复杂?其实证明非常简单,记
\begin{equation}f_n(x) = \sum\limits_{k=0}^n \frac{x^k}{k!}\end{equation}
当$n$是偶数时,我们有$\lim\limits_{x\to\pm\infty} f_n(x)=+\infty$,即整体是开口向上的,所以我们只需要证明它的最小值大于0就行了,又因为它是一个光滑连续的多项式函数,所以最小值点必然是某个极小值点。那么换个角度想,我们只需要证明它所有的极值点(不管是极大还是极小)所对应的函数值都大于0。
GELU的两个初等函数近似是怎么来的
By 苏剑林 | 2020-03-26 | 52089位读者 | 引用AdaFactor优化器浅析(附开源实现)
By 苏剑林 | 2020-03-23 | 85421位读者 | 引用自从GPT、BERT等预训练模型流行起来后,其中一个明显的趋势是模型越做越大,因为更大的模型配合更充分的预训练通常能更有效地刷榜。不过,理想可以无限远,现实通常很局促,有时候模型太大了,大到哪怕你拥有了大显存的GPU甚至TPU,依然会感到很绝望。比如GPT2最大的版本有15亿参数,最大版本的T5模型参数量甚至去到了110亿,这等规模的模型,哪怕在TPU集群上也没法跑到多大的batch size。
这时候通常要往优化过程着手,比如使用混合精度训练(tensorflow下还可以使用一种叫做bfloat16的新型浮点格式),即省显存又加速训练;又或者使用更省显存的优化器,比如RMSProp就比Adam更省显存。本文则介绍AdaFactor,一个由Google提出来的新型优化器,首发论文为《Adafactor: Adaptive Learning Rates with Sublinear Memory Cost》。AdaFactor具有自适应学习率的特性,但比RMSProp还要省显存,并且还针对性地解决了Adam的一些缺陷。
Adam
首先我们来回顾一下常用的Adam优化器的更新过程。设$t$为迭代步数,$\alpha_t$为当前学习率,$L(\theta)$是损失函数,$\theta$是待优化参数,$\epsilon$则是防止溢出的小正数,那么Adam的更新过程为
n维空间下两个随机向量的夹角分布
By 苏剑林 | 2019-11-13 | 138433位读者 | 引用昨天群里大家讨论到了$n$维向量的一些反直觉现象,其中一个话题是“一般$n$维空间下两个随机向量几乎都是垂直的”,这就跟二维/三维空间的认知有明显出入了。要从理论上认识这个结论,我们可以考虑两个随机向量的夹角$\theta$分布,并算算它的均值方差。
概率密度
首先,我们来推导$\theta$的概率密度函数。呃,其实也不用怎么推导,它是$n$维超球坐标的一个直接结论。
要求两个随机向量之间的夹角分布,很显然,由于各向同性,所以我们只需要考虑单位向量,而同样是因为各向同性,我们只需要固定其中一个向量,考虑另一个向量随机变化。不是一般性,考虑随机向量为
\begin{equation}\boldsymbol{x}=(x_1,x_2,\dots,x_n)\end{equation}
而固定向量为
\begin{equation}\boldsymbol{y}=(1,0,\dots,0)\end{equation}
细水长flow之可逆ResNet:极致的暴力美学
By 苏剑林 | 2019-03-21 | 114267位读者 | 引用今天我们来介绍一个非常“暴力”的模型:可逆ResNet。
为什么一个模型可以可以用“暴力”来形容呢?当然是因为它确实非常暴力:它综合了很多数学技巧,活生生地(在一定约束下)把常规的ResNet模型搞成了可逆的!
模型出自《Invertible Residual Networks》,之前在机器之心也报导过。在这篇文章中,我们来简单欣赏一下它的原理和内容。
可逆模型的点滴
为什么要研究可逆ResNet模型?它有什么好处?以前没有人研究过吗?
可逆的好处
可逆意味着什么?
意味着它是信息无损的,意味着它或许可以用来做更好的分类网络,意味着可以直接用最大似然来做生成模型,而且得益于ResNet强大的能力,意味着它可能有着比之前的Glow模型更好的表现~总而言之,如果一个模型是可逆的,可逆的成本不高而且拟合能力强,那么它就有很广的用途(分类、密度估计和生成任务,等等)。
恒等式 det(exp(A)) = exp(Tr(A)) 赏析
By 苏剑林 | 2019-02-18 | 67454位读者 | 引用本文的主题是一个有趣的矩阵行列式的恒等式
\begin{equation}\det(\exp(\boldsymbol{A})) = \exp(\text{Tr}(\boldsymbol{A}))\label{eq:main}\end{equation}
这个恒等式在挺多数学和物理的计算中都出现过,笔者都在不同的文献中看到过好几次了。
注意左端是矩阵的指数,然后求行列式,这两步都是计算量非常大的运算;右端仅仅是矩阵的迹(一个标量),然后再做标量的指数。两边的计算量差了不知道多少倍,然而它们居然是相等的!这不得不说是一个神奇的事实。
所以,本文就来好好欣赏一个这个恒等式。
为什么勒贝格积分比黎曼积分强?
By 苏剑林 | 2016-11-16 | 117428位读者 | 引用学过实变函数的朋友,总会知道有个叫勒贝格积分的东西,号称是黎曼积分的改进版。虽然“实变函数学十遍,泛函分析心泛寒”,在学习实变函数的时候,我们通常都是云里雾里的,不过到最后,在老师的“灌溉”之下,也就耳濡目染了知道了一些结论,比如“黎曼可积的函数(在有限区间),也是勒贝格可积的”,说白了,就是“勒贝格积分比黎曼积分强”。那么,问题来了,究竟强在哪儿?为什么会强?
这个问题,笔者在学习实变函数的时候并没有弄懂,后来也一直搁着,直到最近认真看了《重温微积分》之后,才有了些感觉。顺便说,齐民友老师的《重温微积分》真的很赞,值得一看。
本是同根生,相煎何太急?
【理解黎曼几何】4. 联络和协变导数
By 苏剑林 | 2016-10-16 | 82970位读者 | 引用向量与联络
当我们在我们的位置建立起自己的坐标系后,我们就可以做很多测量,测量的结果可能是一个标量,比如温度、质量,这些量不管你用什么坐标系,它都是一样的。当然,有时候我们会测量向量,比如速度、加速度、力等,这些量都是客观实体,但因为测量结果是用坐标的分量表示的,所以如果换一个坐标,它的分量就完全不一样了。
假如所有的位置都使用同样的坐标,那自然就没有什么争议了,然而我们前面已经反复强调,不同位置的人可能出于各种原因,使用了不同的坐标系,因此,当我们写出一个向量$A^{\mu}$时,严格来讲应该还要注明是在$\boldsymbol{x}$位置测量的:$A^{\mu}(\boldsymbol{x})$,只有不引起歧义的情况下,我们才能省略它。
到这里,我们已经能够进行一些计算,比如$A^{\mu}$是在$\boldsymbol{x}$处测量的,而$\boldsymbol{x}$处的模长计算公式为$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$,因此,$A^{\mu}$的模长为$\sqrt{g_{\mu\nu} A^{\mu}A^{\nu}}$,它是一个客观实体。
最近评论