8 Aug

[共享]不等式文集

最近在浏览“数学研发论坛”的时候,发现了一系列不等式手册,感觉是挺宝贵的资源,就把它转载到这里来了。

当然,里边的内容难度不一,很多东西我自己也未必用得上,甚至不能弄懂,不过还是放在这里保存,并与大家分享。

原文链接:http://bbs.emath.ac.cn/thread-1549-1-1.html

文件包内容:

152个未解决的问题.pdf
HLODER 与 MINKOWSKI不等式.pdf
不等式常用证法50种.pdf
不等式基本性质.pdf
单调函数不等式.pdf
调和函数不等式.pdf
多边形与多面体不等式.pdf
反三角函数不等式.pdf
级数不等式.pdf
数论不等式.pdf

点击阅读全文...

13 Aug

我的大学酒

农村的一个习俗就是孩子上大学了,一般要摆个大学酒,请亲朋好友们一起庆祝一番,说是光宗耀祖等等。那仪式好比婚礼仪式那样隆重......

这几天都是同学们摆大学酒的日子,10号去了东城镇喝老朱的大学酒,还要麻烦老朱他们免费接送,真的有点过意不去呀;11号是我自己的大学酒,叫了一群同学来,最后到场的有二十五个^_^,大家一起在村子礼堂二楼“包场”;12号是大宇和芬姐的,两边都答应了,所以中午去大宇那儿吃了一顿,下午去芬姐那玩了一番......

其实,于我们而言,大学酒就是一场同学们的聚会,藉着这个契机,我们昔日的同窗好友聚在一起,回忆过去,畅谈未来,讲述着我们那说不尽的友谊。我是很庆幸的一个人,三天四个人的大学酒都有我的参与,这至少给了我一些鼓励,这说明我的人际关系还不坏。谢谢邀请我的朋友们。也许很快我们就要真正地各分东西了,但是我相信,很多东西依然会存在我们的心中,那就像一条纽带,将我们紧紧联系在一起,如同天涯咫尺一般。

我相信,有很多地久天长的东西。

大学酒:

点击阅读全文...

18 Aug

电偶极子浅探(2)

在上一篇文章中,我们已经得到了电偶极子的等势面和电场线方程,这应该可以让我们对电偶极子的力场情况有个大致的了解了。当然,我们还是希望能够求出在这样的一个受力情况下,一个带电粒子是如何运动的。简单起见,在下面的探讨中,我们假定带电粒子的质量和电荷量均为1,至于电荷的正负,可以通过改变在$U=-\frac{k \cos\theta}{r^2}$中的k值的正负来控制。我们使用的工具依旧是理论力学中的欧拉-拉格朗日方程。

也许不少读者始终对公式感到头疼,更不用说是博大精深的理论力学了。但是请相信我,如果你花一点点心思去弄懂用变分法研究力学(或其他物理系统,但我目前只会用于力学)的基本思路和步骤,那么对你的物理研究是大有裨益的。因为在我眼中,学习了一丁点的理论力学知识后,我看到的只有物理的简洁与和谐。有兴趣的朋友可以看看我的那几篇《自然极值》等相关文章。

首先写出动能的表达式:$T=\frac{1}{2} (\dot{r}^2+r^2 \dot{\theta}^2)$

还有势能:$U=-\frac{k \cos\theta}{r^2}$

点击阅读全文...

23 Aug

当时七夕笑牵牛

一年一度的七月初七又来了。
民间有俗语说:“今日人间七月七,天上牛郎会织女。”
在我心中,这是一个很美的节日,它承载了中华传统文化,蕴含了爱情这一美好的追求。每一年我对它的感觉不不一样。
我很喜欢一首诗:

银烛秋光冷画屏,
轻罗小扇扑流萤。
天街夜色凉如水,
卧看牵牛织女星。

也许有点凄凉,但我感觉很美,那是多么浪漫的情景!我相信许多东西可以地久天长,我也相信“只羡鸳鸯不羡仙”的真实存在,尽管很多东西我还没有亲身经历过。

点击阅读全文...

30 Aug

折腾windows 8和ubuntu 12

这是一篇用Windows 8完成的文章。

快开学了,华师2号就要报道了,所以就提前入手一台手提电脑,联想Z575AM-ASI,四千元的AMD,4核,64位机器。

我的台式机已经是六年前的产品了,联想的家悦系列,只有512MB内存。所以相比之下,这新机器配置还过得去吧,对于CPU,我个人还是倾向于AMD的,因为我的那台家悦台式也是AMD的CPU,所以对它很有好感。新兴的联想专卖店没有AMD手提,所以还得提前向他们预订。

Windows8

手提本身没有预装操作系统,专卖店很随手地为我装了一个win7,而且还只是ghost版本的,时不时会卡死,感觉很不好,刚好前些日子在网上开始发布Windows8了,所以就马上把Win7格掉,装上Windows8了。安装过程很顺利,由于还没有正式发布,所以还没有激活,这段时间纯粹体验中。等正式版发布了,再计划买一个正版光盘吧

点击阅读全文...

25 Sep

又折腾网络了......

今晚主要干了两件事情:

1、实现了在windows 8的情况下,把自己的笔记本当做wifi的信号发射点,共享校园网(即“笔记本 wifi 热点”那技术,不知道这样会不会折损电脑寿命呀)。主要方法如下:
1.1、安装.net 3.5,安装方法:

挂载windows 8的安装光盘,
然后右击开始菜单(Win + X)的左下角,选择-命令提示符(管理员),接着然后输入如下命令:
dism.exe /online /enable-feature /featurename:NetFX3 /Source:F:\sources\sxs
其中F是安装光盘的驱动器符号。

接下来是漫长等待,估计会有十多分钟,就会提示安装进度100%了。

1.2、安装Connectify软件,直接到官网下载最新的精简版就行,有兴趣可以购买专业版。安装后需要重新启动,然后简单地配置一下就行了,不再细说。

附:
顺便提一下,我也试过国内的wifi共享精灵,但是发现它会卡在“查找当前配置信息”那里,这折腾了我几个小时,最终还是没有解决...所以还是用回外国软件了。

点击阅读全文...

26 Sep

均值不等式的两个巧妙证明

记得几年前,BoJone提供过一个证明均值不等式(代数—几何平均不等式)的方法,但是其中的证明有点长,有点让人眼花缭乱的感觉(虽然里边的思想还是挺简单的)。昨天在上《数学分析》课程的时候,老师讲到了这个不等式,也讲了他的证明,用的是数学归纳法,感觉还是没有那种简洁美和巧妙美。但这让我回想起了之前我研究过的两种巧妙证明方法,可是在昨天划了一整天,都没有把这两种方法回忆起来。直到今天才回想起来,所以就放在这里与大家分享,同时也作备忘之用。

对于若干个非负数$x_i$,我们有
$$\frac{x_1+x_2+...+x_n}{n} \geq \sqrt[n]{x_1 x_2 ... x_n}$$

记为$A_n \geq G_n$

证明1:数学归纳法
这个方法不算简单,但是非常巧妙,它从n递推到n+1的过程让人拍案叫绝。用数学归纳法证明詹森不等式也是同样的递推思路,而均值不等式不过是詹森不等式的一个特例而已。

假设$A_n \geq G_n$成立,要证$A_{n+1} \geq G_{n+1}$。我们有

$$\begin{aligned}&2n A_{n+1}=(n+1)A_{n+1}+(n-1)A_{n+1} \\
=&[x_1 + x_2 +...+x_n]+[x_{n+1}+(n-1)A_{n+1}] \\
\geq &nG_n+n(x_{n+1}\cdot A_{n+1}^{n-1})^{\frac{1}{n}} \\
\geq &2n(G_{n+1}^{n+1}\cdot A_{n+1}^{n-1})^{\frac{1}{2n}}\end{aligned}$$

点击阅读全文...

11 Oct

中国第一个诺贝尔奖得主

他就是莫言。

yan_slide

yan_slide

今天晚上七点钟,诺贝尔奖官方网站这样说:

The Nobel Prize in Literature 2012 was awarded to Mo Yan "who with hallucinatory realism merges folk tales, history and the contemporary".

莫言将现实和幻想、历史和社会角度结合在一起。他创作中的世界令人联想起福克纳和马尔克斯作品的融合,同时又在中国传统文学和口头文学中寻找到一个出发点。

点击阅读全文...