10 Mar

高举“让Keras更酷一些!”大旗,让Keras无限可能~

今天我们会用Keras做到两件很重要的事情:分层设置学习率灵活操作梯度

首先是分层设置学习率,这个用途很明显,比如我们在fine tune已有模型的时候,有些时候我们会固定一些层,但有时候我们又不想固定它,而是想要它以比其他层更低的学习率去更新,这个需求就是分层设置学习率了。对于在Keras中分层设置学习率,网上也有一定的探讨,结论都是要通过重写优化器来实现。显然这种方法不论在实现上还是使用上都不友好。

然后是操作梯度。操作梯度一个最直接的例子是梯度裁剪,也就是把梯度控制在某个范围内,Keras内置了这个方法。但是Keras内置的是全局的梯度裁剪,假如我要给每个梯度设置不同的裁剪方式呢?甚至我有其他的操作梯度的思路,那要怎么实施呢?不会又是重写优化器吧?

本文就来为上述问题给出尽可能简单的解决方案。

点击阅读全文...

10 Apr

分享一次专业领域词汇的无监督挖掘

去年 Data Fountain 曾举办了一个“电力专业领域词汇挖掘”的比赛,该比赛有意思的地方在于它是一个“无监督”的比赛,也就是说它考验的是从大量的语料中无监督挖掘专业词汇的能力。

这个显然确实是工业界比较有价值的一个能力,又想着我之前也在无监督新词发现中做过一定的研究,加之“无监督比赛”的新颖性,所以当时毫不犹豫地参加了,然而最终排名并不靠前~

不管怎样,还是分享一下我自己的做法,这是一个真正意义上的无监督做法,也许会对部分读者有些参考价值。

基准对比

首先,新词发现部分,用到了我自己写的库nlp zero,基本思路是先分别对“比赛所给语料”、“自己爬的一部分百科百科语料”做新词发现,然后两者进行对比,就能找到一批“比赛所给语料”的特征词。

点击阅读全文...

26 Feb

非对抗式生成模型GLANN的简单介绍

前段时间看到facebook发表了一个非对抗的生成模型GLANN(去年12月挂在arxiv上),号称用非对抗的方式也能生成1024的高清人脸,于是饶有兴致地阅读了一番,确实有点收获,但也有点失望。至于为啥失望,大家阅读下去就明白了。

原论文:《Non-Adversarial Image Synthesis with Generative Latent Nearest Neighbors》

机器之心介绍:《为什么让GAN一家独大?Facebook提出非对抗式生成方法GLANN》

效果图:

GLANN效果图

GLANN效果图

点击阅读全文...

19 Apr

从DCGAN到SELF-MOD:GAN的模型架构发展一览

事实上,O-GAN的发现,已经达到了我对GAN的理想追求,使得我可以很惬意地跳出GAN的大坑了。所以现在我会试图探索更多更广的研究方向,比如NLP中还没做过的任务,又比如图神经网络,又或者其他有趣的东西。

不过,在此之前,我想把之前的GAN的学习结果都记录下来。

这篇文章中,我们来梳理一下GAN的架构发展情况,当然主要的是生成器的发展,判别器一直以来的变动都不大。还有,本文介绍的是GAN在图像方面的模型架构发展,跟NLP的SeqGAN没什么关系。

此外,关于GAN的基本科普,本文就不再赘述了。

棋盘效应图示,体现为放大之后出现如国际象棋棋盘一样的交错效应。图片来自文章《Deconvolution and Checkerboard Artifacts》

棋盘效应图示,体现为放大之后出现如国际象棋棋盘一样的交错效应。图片来自文章《Deconvolution and Checkerboard Artifacts》

点击阅读全文...

28 Apr

继续“让Keras更酷一些”之旅。

今天我们会用Keras实现灵活地输出任意中间变量,还有无缝地进行权重滑动平均,最后顺便介绍一下生成器的进程安全写法

首先是输出中间变量。在自定义层时,我们可能希望查看中间变量,这些需求有些是比较容易实现的,比如查看中间某个层的输出,只需要将截止到这个层的部分模型保存为一个新模型即可,但有些需求是比较困难的,比如在使用Attention层时我们可能希望查看那个Attention矩阵的值,如果用构建新模型的方法则会非常麻烦。而本文则给出一种简单的方法,彻底满足这个需求。

接着是权重滑动平均。权重滑动平均是稳定、加速模型训练甚至提升模型效果的一种有效方法,很多大型模型(尤其是GAN)几乎都用到了权重滑动平均。一般来说权重滑动平均是作为优化器的一部分,所以一般需要重写优化器才能实现它。本文介绍一个权重滑动平均的实现,它可以无缝插入到任意Keras模型中,不需要自定义优化器。

至于生成器的进程安全写法,则是因为Keras读取生成器的时候,用到了多进程,如果生成器本身也包含了一些多进程操作,那么可能就会导致异常,所以需要解决这个这个问题。

点击阅读全文...

3 May

从动力学角度看优化算法(四):GAN的第三个阶段

在对GAN的学习和思考过程中,我发现我不仅学习到了一种有效的生成模型,而且它全面地促进了我对各种模型各方面的理解,比如模型的优化和理解视角、正则项的意义、损失函数与概率分布的联系、概率推断等等。GAN不单单是一个“造假的玩具”,而是具有深刻意义的概率模型和推断方法。

作为事后的总结,我觉得对GAN的理解可以粗糙地分为三个阶段:

1、样本阶段:在这个阶段中,我们了解了GAN的“鉴别者-造假者”诠释,懂得从这个原理出发来写出基本的GAN公式(如原始GAN、LSGAN),比如判别器和生成器的loss,并且完成简单GAN的训练;同时,我们知道GAN有能力让图片更“真”,利用这个特性可以把GAN嵌入到一些综合模型中。

2、分布阶段:在这个阶段中,我们会从概率分布及其散度的视角来分析GAN,典型的例子是WGAN和f-GAN,同时能基本理解GAN的训练困难问题,比如梯度消失和mode collapse等,甚至能基本地了解变分推断,懂得自己写出一些概率散度,继而构造一些新的GAN形式。

3、动力学阶段:在这个阶段中,我们开始结合优化器来分析GAN的收敛过程,试图了解GAN是否能真的达到理论的均衡点,进而理解GAN的loss和正则项等因素如何影响的收敛过程,由此可以针对性地提出一些训练策略,引导GAN模型到达理论均衡点,从而提高GAN的效果。

点击阅读全文...

10 Jun

漫谈重参数:从正态分布到Gumbel Softmax

最近在用VAE处理一些文本问题的时候遇到了对离散形式的后验分布求期望的问题,于是沿着“离散分布 + 重参数”这个思路一直搜索下去,最后搜到了Gumbel Softmax,从对Gumbel Softmax的学习过程中,把重参数的相关内容都捋了一遍,还学到一些梯度估计的新知识,遂记录在此。

文章从连续情形出发开始介绍重参数,主要的例子是正态分布的重参数;然后引入离散分布的重参数,这就涉及到了Gumbel Softmax,包括Gumbel Softmax的一些证明和讨论;最后再讲讲重参数背后的一些故事,这主要跟梯度估计有关。

基本概念

重参数(Reparameterization)实际上是处理如下期望形式的目标函数的一种技巧:
\begin{equation}L_{\theta}=\mathbb{E}_{z\sim p_{\theta}(z)}[f(z)]\label{eq:base}\end{equation}
这样的目标在VAE中会出现,在文本GAN也会出现,在强化学习中也会出现($f(z)$对应于奖励函数),所以深究下去,我们会经常碰到这样的目标函数。取决于$z$的连续性,它对应不同的形式:
\begin{equation}\int p_{\theta}(z) f(z)dz\,\,\,\text{(连续情形)}\qquad\qquad \sum_{z} p_{\theta}(z) f(z)\,\,\,\text{(离散情形)}\end{equation}
当然,离散情况下我们更喜欢将记号$z$换成$y$或者$c$。

点击阅读全文...

27 Jul

为节约而生:从标准Attention到稀疏Attention

attention, please!

attention, please!

如今NLP领域,Attention大行其道,当然也不止NLP,在CV领域Attention也占有一席之地(Non Local、SAGAN等)。在18年初《〈Attention is All You Need〉浅读(简介+代码)》一文中,我们就已经讨论过Attention机制,Attention的核心在于$\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V}$三个向量序列的交互和融合,其中$\boldsymbol{Q},\boldsymbol{K}$的交互给出了两两向量之间的某种相关度(权重),而最后的输出序列则是把$\boldsymbol{V}$按照权重求和得到的。

显然,众多NLP&CV的成果已经充分肯定了Attention的有效性。本文我们将会介绍Attention的一些变体,这些变体的共同特点是——“为节约而生”——既节约时间,也节约显存

背景简述

《Attention is All You Need》一文讨论的我们称之为“乘性Attention”,目前用得比较广泛的也就是这种Attention:
\begin{equation}Attention(\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V}) = softmax\left(\frac{\boldsymbol{Q}\boldsymbol{K}^{\top}}{\sqrt{d_k}}\right)\boldsymbol{V}\end{equation}

点击阅读全文...