15 Mar

从最大似然到EM算法:一致的理解方式

最近在思考NLP的无监督学习和概率图相关的一些内容,于是重新把一些参数估计方法理了一遍。在深度学习中,参数估计是最基本的步骤之一了,也就是我们所说的模型训练过程。为了训练模型就得有个损失函数,而如果没有系统学习过概率论的读者,能想到的最自然的损失函数估计是平均平方误差,它也就是对应于我们所说的欧式距离。而理论上来讲,概率模型的最佳搭配应该是“交叉熵”函数,它来源于概率论中的最大似然函数。

最大似然

合理的存在

何为最大似然?哲学上有句话叫做“存在就是合理的”,最大似然的意思是“存在就是最合理的”。具体来说,如果事件$X$的概率分布为$p(X)$,如果一次观测中具体观测到的值分别为$X_1,X_2,\dots,X_n$,并假设它们是相互独立,那么
$$\mathcal{P} = \prod_{i=1}^n p(X_i)\tag{1}$$
是最大的。如果$p(X)$是一个带有参数$\theta$的概率分布式$p_{\theta}(X)$,那么我们应当想办法选择$\theta$,使得$\mathcal{L}$最大化,即
$$\theta = \mathop{\text{argmax}}_{\theta} \mathcal{P}(\theta) = \mathop{\text{argmax}}_{\theta}\prod_{i=1}^n p_{\theta}(X_i)\tag{2}$$

点击阅读全文...

28 Mar

变分自编码器(二):从贝叶斯观点出发

源起

前几天写了博文《变分自编码器(一):原来是这么一回事》,从一种比较通俗的观点来理解变分自编码器(VAE),在那篇文章的视角中,VAE跟普通的自编码器差别不大,无非是多加了噪声并对噪声做了约束。然而,当初我想要弄懂VAE的初衷,是想看看究竟贝叶斯学派的概率图模型究竟是如何与深度学习结合来发挥作用的,如果仅仅是得到一个通俗的理解,那显然是不够的。

所以我对VAE继续思考了几天,试图用更一般的、概率化的语言来把VAE说清楚。事实上,这种思考也能回答通俗理解中无法解答的问题,比如重构损失用MSE好还是交叉熵好、重构损失和KL损失应该怎么平衡,等等。

建议在阅读《变分自编码器(一):原来是这么一回事》后对本文进行阅读,本文在内容上尽量不与前文重复。

准备

在进入对VAE的描述之前,我觉得有必要把一些概念性的内容讲一下。

点击阅读全文...

18 May

简明条件随机场CRF介绍(附带纯Keras实现)

笔者去年曾写过博文《果壳中的条件随机场(CRF In A Nutshell)》,以一种比较粗糙的方式介绍了一下条件随机场(CRF)模型。然而那篇文章显然有很多不足的地方,比如介绍不够清晰,也不够完整,还没有实现,在这里我们重提这个模型,将相关内容补充完成。

本文是对CRF基本原理的一个简明的介绍。当然,“简明”是相对而言中,要想真的弄清楚CRF,免不了要提及一些公式,如果只关心调用的读者,可以直接移到文末。

图示

按照之前的思路,我们依旧来对比一下普通的逐帧softmax和CRF的异同。

逐帧softmax

CRF主要用于序列标注问题,可以简单理解为是给序列中的每一帧都进行分类,既然是分类,很自然想到将这个序列用CNN或者RNN进行编码后,接一个全连接层用softmax激活,如下图所示

逐帧softmax并没有直接考虑输出的上下文关联

逐帧softmax并没有直接考虑输出的上下文关联

点击阅读全文...

30 May

在前一文《最小熵原理(二):“当机立断”之词库构建》中,我们以最小熵原理为出发点进行了一系列的数学推导,最终得到$(2.15)$和$(2.17)$式,它告诉我们两个互信息比较大的元素我们应该将它们合并起来,这有利于降低“学习难度”。于是利用这一原理,我们通过邻字互信息来实现了词库的无监督生成。

由字到词、由词到词组,考察的是相邻的元素能不能合并成一个好“套路”。可是套路为什么非得要相邻的呢?当然不一定相邻,我们学习语言的时候,不仅仅会学习到词语、词组,还要学习到“固定搭配”,也就是说词语怎么运用才是合理的,这是语法的体现,是本文所要探究的,希望最终能达到一定的无监督句法分析的效果。

由于这次我们考虑的是跨邻词的语言关联,因此我给它起个名字为“飞象过河”,正是

“套路宝典”第二式——“飞象过河”

语言结构

对于大多数人来说,并不会真正知道什么是语法,他们脑海里就只有一些“固定搭配”、“定式”,或者更正式一点可以叫“模版”。大多数情况下,我们是根据模版来说出合理的话来。而不同的人的说话模版可能有所不同,这就是个人的说话风格,甚至是“口头禅”。

点击阅读全文...

13 Jun

“噪声对比估计”杂谈:曲径通幽之妙

说到噪声对比估计,或者“负采样”,大家可能立马就想到了Word2Vec。事实上,它的含义远不止于此,噪音对比估计(NCE, Noise Contrastive Estimation)是一个迂回但却异常精美的技巧,它使得我们在没法直接完成归一化因子(也叫配分函数)的计算时,就能够去估算出概率分布的参数。本文就让我们来欣赏一下NCE的曲径通幽般的美妙。

注:由于出发点不同,本文所介绍的“噪声对比估计”实际上更偏向于所谓的“负采样”技巧,但两者本质上是一样的,在此不作区分。

问题起源

问题的根源是难分难舍的指数概率分布~

指数族分布

在很多问题中都会出现指数族分布,即对于某个变量$\boldsymbol{x}$的概率$p(\boldsymbol{x})$,我们将其写成
$$p(\boldsymbol{x}) = \frac{e^{G(\boldsymbol{x})}}{Z}\tag{1}$$
其中$G(\boldsymbol{x})$是$\boldsymbol{x}$的某个“能量”函数,而$Z=\sum_{\boldsymbol{x}} e^{G(\boldsymbol{x})}$则是归一化常数,也叫配分函数。这种分布也称为“玻尔兹曼分布”。

点击阅读全文...

27 Jun

从动力学角度看优化算法(一):从SGD到动量加速

在这个系列中,我们来关心优化算法,而本文的主题则是SGD(stochastic gradient descent,随机梯度下降),包括带Momentum和Nesterov版本的。对于SGD,我们通常会关心的几个问题是:

SGD为什么有效?
SGD的batch size是不是越大越好?
SGD的学习率怎么调?
Momentum是怎么加速的?
Nesterov为什么又比Momentum稍好?
...

这里试图从动力学角度分析SGD,给出上述问题的一些启发性理解。

梯度下降

既然要比较谁好谁差,就需要知道最好是什么样的,也就是说我们的终极目标是什么?

训练目标分析

假设全部训练样本的集合为$\boldsymbol{S}$,损失度量为$L(\boldsymbol{x};\boldsymbol{\theta})$,其中$\boldsymbol{x}$代表单个样本,而$\boldsymbol{\theta}$则是优化参数,那么我们可以构建损失函数
$$L(\boldsymbol{\theta}) = \frac{1}{|\boldsymbol{S}|}\sum_{\boldsymbol{x}\in\boldsymbol{S}} L(\boldsymbol{x};\boldsymbol{\theta})\tag{1}$$
训练的终极目标,则是找到$L(\boldsymbol{\theta})$的一个全局最优点(这里的最优是“最小”的意思)。

点击阅读全文...

20 Dec

《从动力学角度看优化算法(一):从SGD到动量加速》一文中,我们提出SGD优化算法跟常微分方程(ODE)的数值解法其实是对应的,由此还可以很自然地分析SGD算法的收敛性质、动量加速的原理等等内容。

在这篇文章中,我们继续沿着这个思路,去理解优化算法中的自适应学习率算法。

RMSprop

首先,我们看一个非常经典的自适应学习率优化算法:RMSprop。RMSprop虽然不是最早提出的自适应学习率的优化算法,但是它却是相当实用的一种,它是诸如Adam这样的更综合的算法的基石,通过它我们可以观察自适应学习率的优化算法是怎么做的。

算法概览

一般的梯度下降是这样的:
$$\begin{equation}\boldsymbol{\theta}_{n+1}=\boldsymbol{\theta}_{n} - \gamma \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_{n})\end{equation}$$
很明显,这里的$\gamma$是一个超参数,便是学习率,它可能需要在不同阶段做不同的调整。

而RMSprop则是
$$\begin{equation}\begin{aligned}\boldsymbol{g}_{n+1} =& \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_{n})\\
\boldsymbol{G}_{n+1}=&\lambda \boldsymbol{G}_{n} + (1 - \lambda) \boldsymbol{g}_{n+1}\otimes \boldsymbol{g}_{n+1}\\
\boldsymbol{\theta}_{n+1}=&\boldsymbol{\theta}_{n} - \frac{\tilde{\gamma}}{\sqrt{\boldsymbol{G}_{n+1} + \epsilon}}\otimes \boldsymbol{g}_{n+1}
\end{aligned}\end{equation}$$

点击阅读全文...

10 Oct

变分自编码器 = 最小化先验分布 + 最大化互信息

这篇文章很简短,主要描述的是一个很有用、也不复杂、但是我居然这么久才发现的事实~

《深度学习的互信息:无监督提取特征》一文中,我们通过先验分布和最大化互信息两个loss的加权组合来得到Deep INFOMAX模型最后的loss。在那篇文章中,虽然把故事讲完了,但是某种意义上来说,那只是个拼凑的loss。而本文则要证明那个loss可以由变分自编码器自然地导出来。

过程

不厌其烦地重复一下,变分自编码器(VAE)需要优化的loss是
\begin{equation}\begin{aligned}&KL(\tilde{p}(x)p(z|x)\Vert q(z)q(x|z))\\
=&\iint \tilde{p}(x)p(z|x)\log \frac{\tilde{p}(x)p(z|x)}{q(x|z)q(z)} dzdx\end{aligned}\end{equation}
相关的论述在本博客已经出现多次了。VAE中既包含编码器,又包含解码器,如果我们只需要编码特征,那么再训练一个解码器就显得很累赘了。所以重点是怎么将解码器去掉。

其实再简单不过了,把VAE的loss分开两部分

点击阅读全文...