数学竞赛广东预赛|组成三角形的概率
By 苏剑林 | 2011-09-12 | 58215位读者 | 引用九月三日BoJone和九个同学到云浮参加了今年广东省的数学竞赛预赛,那一起出发、玩笑、作战、吃饭的情景依然历历在目,让我久久不能忘怀。是呀,能够并肩作战的感觉真好!九日数学成绩出来了,遗憾的是今年政策改变了,我被告知整个市只有三个名额能够参加复赛,于是新兴只有我一个人进入了复赛(另外两个据说是罗定的,我们三个并列第一)。有点无语,我想,大概是要把那些为了功利而参赛的人都给刷下去吧...
今年广东的预赛题前所未有的简单,不论是和全国其他地方相比还是和上一年的题目相比,都简单了不少,但我还是做得不大理想,据我估计,120分的卷子我顶多能够拿个68分,所以BoJone的基本技能实在不容乐观。从云浮考试回来后,和同行的同学讨论试题,得出了一些很有趣的结果,那过程可谓其乐无穷呀!下面是倒数第二题预赛题的几个绝妙解法,供大家欣赏。解法由我和伍泽麒(人称“兔子、神兔”,人如其名,天资聪颖,性格可爱)完成。
题目:
在一条线段中随意选取两个点,把这条线段截成三段,求这三段线段能够组成一个三角形的概率。
[欧拉数学]素数有无穷多个的两个证明
By 苏剑林 | 2011-10-02 | 72106位读者 | 引用素数是数的基本单元,就如同高楼大厦中的砖块一样。显然,素数有无穷多个是数论研究价值的前提。不然,数的研究就局限在有限个素数之内,那么很多数字就会失去了它们的魅力。就好比只有有限块砖头,就不能创建出建筑的奇迹一般。下面介绍两个关于素数无穷的经典证明,其中一个是欧几里得的证明,这是最原始、最简单的证法,相信很多读者已经学习过了,在此还是要提一下;另外一个是我在《怎样解题》中看到的,原作者是欧拉,也是一个非常美妙的证明。当然,本文强调的思想,论证过程可能会有一些不严谨的地方,请读者完善^_^
一、欧几里得证明
这个证明思想非常简单:若干个素数的积加上1后会产生新的素数因子。要是素数只有n个,那么我们就把它们相乘,然后加上1,得到的将会是什么呢?如果是一个素数,那么将会与素数只有n个矛盾;如果是一个合数,它除以原来的n个素数都不是整数,那么它就会拥有新的素数因子了,这还是和只有n个素数矛盾。不论哪种情况,只有素数有限,就会得出矛盾,于是素数必然是无限的。
[欧拉数学]凸多面体的面、顶、棱公式
By 苏剑林 | 2011-11-17 | 45184位读者 | 引用作为数学史上最高产的数学家(似乎没有之一),欧拉的研究几乎涉及了所有数学领域,包括数论、图论、微积分等,同时他还是一个物理学家,他与拉格朗日首创的变分法使得经典力学的研究达到了一个新的高度。欧拉具有惊人的计算能力和数学直觉,这对他的数学研究帮助极大。现在在很多领域,我们都可以看到不少以欧拉命名的公式、定理。欧拉在数学上极为高产,而且得出了相当多的正确结论,但其中有相当多的结论只是来源于他的数学直觉(创造性思维)以及类比推理,这并非欧拉不追求严谨,而是由于当时数学知识的局限性,难以严密化。还有,研究的顺序是:先得出答案,然后才论证答案!
再者,创造性思维往往令人叫绝,能更加促进我们的思维能力。过多地考虑严格性和技术细节,通常都妨碍了我们得出正确的答案。正如《解题的艺术》中说道:粗略而有灵感的思想可能会引出严格证明;而有时,严格的证明会完全淡化论证的精髓。因此,我们不必在意欧拉证明的不严谨,反而,它是一次完美的视觉与思维享受。正因如此,一些绝妙、非严密、(在某种程度上)不正确的但同时得出了正确结果的数学论证,就被称为“欧拉数学”。事实上,任何人、任何研究都必须经过“欧拉数学”这一不严密的早期阶段。
------------华丽的分割线----------------
下面是一条关于凸多面体的面、顶、棱公式,它属于拓扑学的内容,我们称之为“欧拉公式”。(当然,公式是欧拉的,论证过程只是笔者粗糙地给出的)。
[欧拉数学]黎曼ζ函数
By 苏剑林 | 2011-11-18 | 51012位读者 | 引用欧拉数学的魅力在于,它运用类比的方法,把各个看似毫无关联的领域联系了起来,生动而巧妙地得出了正确的结果。他对$\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...=\frac{\pi^2}{6}$的计算便是一个典型的例子。虽然论证过程未必严谨,但是那“神奇”的推导已经令我们拍案叫绝,而且往往发人深思。这种效果通常是严格论证难以实现的,它不仅给予我们答案,而且还给予了我们启迪:新的思想,新的方向;有时,它还揭示了各个学科之间内在而深刻的联系。下面我们来观察一下数论中的“黎曼ζ函数”和“金钥匙”!
黎曼ζ函数指的是:
$$\xi (s)=\sum_{n=1}^{\infty} \frac{1}{n^s}=\frac{1}{1^s}+\frac{1}{2^s}+\frac{1}{3^s}+\frac{1}{4^s}+...$$
本来s应该是一个实数,但是将复分析引入数论后,将s推广至复数具有更大的研究价值。
[欧拉数学]素数倒数之和
By 苏剑林 | 2011-11-19 | 38547位读者 | 引用上一篇文章我通过欧拉数学的方式简单地讲了数论中的“黎曼ζ函数”和“金钥匙”。事实上,这把“金钥匙”与很多问题之间的联系已经被建立了起来,换句话说,“金钥匙”已经插入到了相应的“锁孔”中,数学家的工作就是要把这个金钥匙“拧动”,继而打开数学之门!
接下来我们看看如何证明所有素数的倒数之和发散的。在入正题之前,我们得需要看一个引理:
无限数列${a_n}$的每一项都大于0,那么$\sum\limits_{n=1}^{\infty} a_n$与$\prod\limits_{n=1}^{\infty} \left(1+a_n\right)$的敛散性相同。换句话说,两者互为充分必要条件!
最近评论