我们经常听说牛顿力学、相对论力学、量子力学等物理名词,也不时会听到“理论力学”。其实,“理论力学”这个名词是不大妥当的,因为这很容易会让人误认为这是一种新的力学体系。而事实上,理论力学并不是像牛顿力学那样是一种力学体系,而是一种研究力学的方法,而研究的对象在多数情况下依然是经典力学(翻开任意一本《理论力学》教程都不难发现这一点)。简单来讲,它把牛顿时代用微积分来研究力学的方法转变为了“变分”,变“常微分”为“偏微分”。看上去这有点“化简为繁”,但事实上这样的一个转变却带来了力学研究的一个巨大的飞跃。
说到这里,也许有的读者会感到害怕了:这里边肯定又涉及了各种高深莫测的高等数学方法,我们只能望而却步。的确,理论力学中的方法很是深奥,纵使是一个优秀的大学数理本科生,也可能要花上一年多时间才能学完一本《理论力学》。可是,通过最小作用量原理的方法去研究物理又显得如此地诱人。难道像我们这些初级人士就无法亲身体验理论力学方法给我们带来的巨大便利和不一样的体验了吗?
我们在研究地球附近的小天体运动时,如果把天体和地球看作一个二体系统,那最多只能算上一个零级近似,如果使用“地球+月球+小天体”组成的圆形限制性三体问题模型,那可以算上一个二级近似了。那么,一级近似又是什么了。BoJone认为,它就是本文将要讲的“双固定引力中心问题”了,也叫“双不动中心问题”,英文名是two fixed-center problem。这是一种特殊的限制性三体问题。在这个三体系统中,两个主天体(或称有限质量天体)固定不动,第三个小天体在两个固定的主天体吸引下运动。欧拉、拉格朗日、勒让德、雅可比等人很早就研究过这个问题。其中,欧拉最先成功地求出了这个系统的积分。[引用]
另外,双固定引力中心问题还有另外一个应用,在研究人造卫星的运动时,可以只考虑地球引力,但是由于地球不是完美的球体,把其看成一个质点其实不十分精确,要是把它拆分为两个引力源,就可以很大程度上提高精确度。毕竟双固定引力中心问题是完全可以积分的,可以作为一个比较好的中间轨道(介乎圆锥曲线和精确轨道之间的)。
看完了“双不动中心”问题,我们不妨再来看一个貌似简单一点的力学问题,在一个固定质点的引力吸引的基础上,增加一个恒力作用,研究这样的力场中小天体的运动。
咋看上去这个问题比“双不动中心”简单多了,至少运动方程也显得更简单:
$$\ddot{vec{r}}=-GM\frac{\vec{r}}{|\vec{r}|^3}+\vec{F}$$
其中$\vec{F}$是一个常向量。不过让人比较意外的是,这个问题本质上和“双不动中心”是一样的,它可以看作是双不动中心问题的一个极限情况。而且它们的解法也是惊人地相似,下面我们就来分析这一个过程。
首先很容易写出这个方程的能量守恒积分:
$$1/2 \dot{vec{r}}^2-GM\frac{1}{|\vec{r}|}-\vec{F}\cdot \vec{r}=h$$
地球引力场的悬链线方程
By 苏剑林 | 2011-05-15 | 61958位读者 | 引用之前曾在《自然极值》系列文章中提到过均匀重力场下的悬链线形状问题,并且在那文章中向读者提出:在一个质点(地球)引力场中的悬链线形状会是怎么样的。说实话,提出这个问题的时候,我还不懂怎么解答这个问题,不过现在会了,回头一看,已经几个月了,时间过得真快...
与之前的思路一样,我们依旧采用的是“平衡态公理”,即总势能最小。从天体力学中我们知道,任意两个质点间的势能为$-\frac{Gm_1 m_2}{r}$。对于本题的悬链线问题,我们可以把地球放到坐标原点位置,而悬链的两个固定点分别为$(x_1,y_1)$和$(x_2,y_2)$,链的总长度为l。即
$$\int_{x_1}^{x_2} \sqrt{dx^2+dy^2}=l$$
两本通俗读物:混沌和对称
By 苏剑林 | 2011-05-28 | 17823位读者 | 引用第一本:《天遇——混沌与稳定性的起源》
一个天体力学中的N体问题的研究,竟然发展出了如此多的现代数学理论,这不能不说是一个令人意外的事情。而事实上,N体问题至今仍是无解,这也许并非坏事,因为未被完全攻克,就意味着“N体问题”仍然还是一只“会下金蛋的母鸡”!
本书是普林斯顿文集之一。作者通过大众化的语言,叙述了天体力学和动力系统理论的历史发展,让读者感到其中那激动人心的故事。BoJone认为,要想了解分析动力学(尤其是天体力学)的发展,本书是一本难得的读物。作为混沌和稳定性理论的入门前读物,本书也是非常适合的。读历史的关键是:学会思想!
遐思1:n次代数方程的解可以这样表示吗?
By 苏剑林 | 2011-05-28 | 29464位读者 | 引用打从科学空间建立起,就已经设立了“问题百科”这一个分类,但内容一直都很少,主要是平时太懒去总结一些问题。现在得要养成善于思考、总结的习惯了。
前几天到网上印刷了《天遇》和《无法解出的方程》来阅读,两者都是我很感兴趣的书。想当初在初中阶段阅读《数学史选讲》时,我最感兴趣的就是解方程方面的内容(根式解),通过研究理解了1到4次方程的求根公式,并通过阅读知道了4次以上的代数方程没有一般的根式可解。这在当时是多么值得高兴的一件事情!!
现在,稍稍阅读了《无法解出的方程》后,结合我之前在代数方程方面的一些总结,提出一个问题:
若任意的一元n次方程$\sum_{i=0}^{n} a_i x^i=0$的根记为$x_i=R_{n,i}(a_0,a_1,...,a_n)$
那么,是否存在大于3的n,使得任意的一元(n+1)次方程的根能够用加、减、乘、除、幂、开方以及$R_{j,i}$(j可以是1到n的任意整数)通过有限步骤运算出来?
这个问题可以换一个近似但不等价的说法:
若一元1次、2次、...、n次均可以根式解答,那么一元(n+1)次方程能否有根式解?
也就是说,(n+1)次方程的根能够表示成 1到n次方程的根与加、减、乘、除、幂、开方的有限次运算?
(不考虑前提的正确与否,显然n=4已经不成立了,当时n=5,6,7,8,...等有没有可能呢?)
期待有人能够解决^_^
向量结合复数:常曲率曲线(1)
By 苏剑林 | 2011-06-19 | 29914位读者 | 引用在之前的一篇向量系列的文章中,我们通过结合物理与向量来巧妙地推导出了曲线(包括平面和空间的)的曲率半径为
$$R=\frac{v^2}{a_c}=\frac{|\dot{\vec{r}}|^3}{|\dot{\vec{r}}\times \ddot{\vec{r}}|}\tag{1}$$
曲率则是曲率半径的导数:$\rho=\frac{1}{R}$。我们反过来思考一下:曲率恒定的平面曲线是否只有圆?
答案貌似是很显然的,我们需要证明一下。
由于只是考虑平面情况,我们先设$\dot{\vec{r}}=(v cos\theta,v sin\theta)=z=ve^{i\theta}$,代入(1)得到
$\frac{\dot{\theta}}{v}=\rho$————(2)
高中数学联赛题目和答案
By 苏剑林 | 2011-06-25 | 26241位读者 | 引用2011年的高中数学联赛拉开帷幕了...
前些天数学老师找了我们两个重点班的8个人,商量了参加今年数学联赛预赛的事情。大家都同意尝试,同时在我的强烈要求之下,增加了两位同学(一位是我的同桌,另外一位是我心目中的“天才生”)。只是老师也没有组织经验,而我上一年有过参赛经验(本来那是高三的玩意儿,我那时一个高二生瞎搅和进去,居然把高三的几个师兄师姐P下去了,意外呀...^_^),老师就把辅导其他九位同学的任务交给我(艰巨...)。
其实我也没有累积多少数学竞赛的知识,我最感兴趣的数学,几乎都不能在数学竞赛中用到。不过既然报名了,还是得准备准备,因此在网上找了最近几年的高中数学联赛试题和答案来看。顺便放到这里共享,供有需要的朋友下载。
最近评论