1 Jan

2019年全年天象

Astronomy Calendar of Celestial Events
2019年全年天象

翻译自NASA:http://eclipse.gsfc.nasa.gov/SKYCAL/SKYCAL.html

(北京时间)

2011年版本

2012年版本

2013年版本

2014年版本

2015年版本

2016年版本

2017年版本

2018年版本

点击阅读全文...

26 Dec

【学习清单】最近比较重要的GAN进展论文

这篇文章简单列举一下我认为最近这段时间中比较重要的GAN进展论文,这基本也是我在学习GAN的过程中主要去研究的论文清单。

生成模型之味

GAN是一个大坑,尤其像我这样的业余玩家,一头扎进去很久也很难有什么产出,尤其是各个大公司拼算力搞出来一个个大模型,个人几乎都没法玩了。但我总觉得,真的去碰了生成模型,才觉得自己碰到了真正的机器学习。这一点,不管在图像中还是文本中都是如此。所以,我还是愿意去关注生成模型。

当然,GAN不是生成模型的唯一选择,却是一个非常有趣的选择。在图像中至少有GAN、flow、pixelrnn/pixelcnn这几种选择,但要说潜力,我还是觉得GAN才是最具前景的,不单是因为效果,主要是因为它那对抗的思想。而在文本中,事实上seq2seq机制就是一个概率生成模型了,而pixelrnn这类模型,实际上就是模仿着seq2seq来做的,当然也有用GAN做文本生成的研究(不过基本上都涉及到了强化学习)。也就是说,其实在NLP中,生成模型也有很多成果,哪怕你主要是研究NLP的,也终将碰到生成模型。

好了,话不多说,还是赶紧把清单列一列,供大家参考,也作为自己的备忘。

点击阅读全文...

22 Oct

RSGAN:对抗模型中的“图灵测试”思想

这两天无意间发现一个非常有意义的工作,称为“相对GAN”,简称RSGAN,来自文章《The relativistic discriminator: a key element missing from standard GAN》,据说该文章还得到了GAN创始人Goodfellow的点赞。这篇文章提出了用相对的判别器来取代标准GAN原有的判别器,使得生成器的收敛更为迅速,训练更为稳定。

可惜的是,这篇文章仅仅从训练和实验角度对结果进行了论述,并没有进行更深入的分析,以至于不少人觉得这只是GAN训练的一个trick。但是在笔者来看,RSGAN具有更为深刻的含义,甚至可以看成它已经开创了一个新的GAN流派。所以,笔者决定对RSGAN模型及其背后的内涵做一个基本的介绍。不过需要指出的是,除了结果一样之外,本文的介绍过程跟原论文相比几乎没有重合之处。

“图灵测试”思想

SGAN

SGAN就是标准的GAN(Standard GAN)。就算没有做过GAN研究的读者,相信也从各种渠道了解到GAN的大概原理:“造假者”不断地进行造假,试图愚弄“鉴别者”;“鉴别者”不断提高鉴别技术,以分辨出真品和赝品。两者相互竞争,共同进步,直到“鉴别者”无法分辨出真、赝品了,“造假者”就功成身退了。

在建模时,通过交替训练实现这个过程:固定生成器,训练一个判别器(二分类模型),将真实样本输出1,将伪造样本输出0;然后固定判别器,训练生成器让伪造样本尽可能输出1,后面这一步不需要真实样本参与。

问题所在

然而,这个建模过程似乎对判别器的要求过于苛刻了,因为判别器是孤立运作的:训练生成器时,真实样本没有参与,所以判别器必须把关于真实样本的所有属性记住,这样才能指导生成器生成更真实的样本。

点击阅读全文...

14 Jan

基于CNN和序列标注的对联机器人

缘起

前几天在量子位公众号上看到了《这个脑洞清奇的对联AI,大家都玩疯了》一文,觉得挺有意思,难得的是作者还整理并公开了数据集,所以决定自己尝试一下。

动手

“对对联”,我们可以看成是一个句子生成任务,可以用seq2seq完成,跟笔者之前写的《玩转Keras之seq2seq自动生成标题》一样,稍微修改一下输入即可。上面提到的文章所用的方法也是seq2seq,可见这算是标准做法了。

点击阅读全文...

15 Feb

在这个系列中,我们尝试从能量的视角理解GAN。我们会发现这个视角如此美妙和直观,甚至让人拍案叫绝。

上一篇文章里,我们给出了一个直白而用力的能量图景,这个图景可以让我们轻松理解GAN的很多内容,换句话说,通俗的解释已经能让我们完成大部分的理解了,并且把最终的结论都已经写了出来。在这篇文章中,我们继续从能量的视角理解GAN,这一次,我们争取把前面简单直白的描述,用相对严密的数学语言推导一遍

跟第一篇文章一样,对于笔者来说,这个推导过程依然直接受启发于Bengio团队的新作《Maximum Entropy Generators for Energy-Based Models》

原作者的开源实现:https://github.com/ritheshkumar95/energy_based_generative_models

本文的大致内容如下:

1、推导了能量分布下的正负相对抗的更新公式;

2、比较了理论分析与实验采样的区别,而将两者结合便得到了GAN框架;

3、导出了生成器的补充loss,理论上可以防止mode collapse;

4、简单提及了基于能量函数的MCMC采样。

点击阅读全文...

30 Oct

缅怀金庸 | 愿你登上10930小行星继续翱翔

金庸大师

金庸大师

金庸走了,享年94岁。

虽然说这些高龄大师们,不管是科学家还是文学家,他们在晚年基本上都不会有什么产出,过于理性的话会有“去了就去了,好像也没有什么损失”的感觉。然而,事实是大师的逝去总让我们有一种悲伤的震撼感,总让我们觉得似乎一个时代又逝去了。霍金是这样,金庸也是这样。

对于金老爷子来说,是一个武侠时代过去了,是一个江湖过去了。

飞雪连天射白鹿,笑书神侠倚碧鸳。

这个对联描述了金庸的14部作品,加上《越女剑》,就构成了他的15部武侠小说。金庸用这15部小说,描述了一个个活灵活现的江湖,不,说江湖好象都太小了,读完这15部作品,你会感觉他描述了整个中国几千年的历史、整个社会。

点击阅读全文...

15 Nov

又一道川菜!媲美“开水白菜”的瓜燕穗肚

开水白菜是一道非常经典的四川名菜,是国宴级别的菜肴。以前就写过科普《不求珍馐百味,但愿开水白菜》来介绍了开水白菜。

好吃的东西有很多,开水白菜让我惦记的,是它那精致到极致的追求,是那种锋芒不露的内敛。

刚才浏览视频时,发现了另一道类似的菜肴:瓜燕穗肚。而且它也是一道川菜~用猪肚仁切成麦穗的形状,用冬瓜做成燕窝的外形,配合跟开水白菜一样的上等清汤,就构成了瓜燕穗肚。

“瓜燕穗肚”截图(没有什么高清图,我是直接从下面视频里截图的)

“瓜燕穗肚”截图(没有什么高清图,我是直接从下面视频里截图的)

点击阅读全文...

20 Nov

不用L约束又不会梯度消失的GAN,了解一下?

不知道从什么时候开始,我发现我也掉到了GAN的大坑里边了,唉,争取早日能跳出来...

这篇博客介绍的是我最近提交到arxiv的一个关于GAN的新框架,里边主要介绍了一种对概率散度的新理解,并且基于这种理解推导出了一个新的GAN。整篇文章比较偏理论,对这个GAN的相关性质都做了完整的论证,自认为是一个理论完备的结果。

文章链接:https://papers.cool/arxiv/1811.07296

先摆结论:

1、论文提供了一种分析和构造概率散度的直接思路,从而简化了构建新GAN框架的过程。

2、推导出了一个称为GAN-QP的GAN框架$\eqref{eq:gan-gp-gd}$,这个GAN不需要像WGAN那样的L约束,又不会有SGAN的梯度消失问题,实验表明它至少有不逊色于、甚至优于WGAN的表现。

GAN-QP效果图

GAN-QP效果图

论文的实验最大做到了512x512的人脸生成(CelebA HQ),充分表明了模型的有效性(效果不算完美,但是模型特别简单)。有兴趣的朋友,欢迎继续阅读下去。

点击阅读全文...