29 Aug

三角半分正方形

印象中我在初一曾从一个美术生好朋友那里学到了一个画椭圆的方法:选取一个矩形,取一组邻边的中点,连接并切除得到的三角形;在剩下的五边形中,继续取邻边中点,连接,切除,得到一个如下图的图形;然后作一个尽可能与下图AG、GH、HI、IJ相切的弧,这个弧就大概为四分之一的椭圆了。

椭圆的美术画法

椭圆的美术画法

点击阅读全文...

23 Oct

2011年全国高中数学联赛

16日开考。我们15日出发,坐了将近五个小时的车到惠州(第八中学)参加考试。然而让我很无奈的是,虽然之前做了一定准备,这次考试发挥出奇的差,所以,拿奖只是个梦...^_^

后来才发现,我很悲剧地考了A卷,再看一下B卷的题目,发现那更合我胃口,更无语了...难道是运气在上一年用光了?

其实物理竞赛更适合我,只是那偏远的地方连资格都被忽略了...

不再说什么了,还是老老实实在科学空间与大家分享、讨论科学问题更开心。

下面附上今年的联赛题目:

点击阅读全文...

18 Mar

指数函数及其展开式孰大孰小?

在x>0时,指数函数$f(x)=e^x$与幂函数$h_n (x)=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...+\frac{x^n}{n!}$孰大孰小?

对于已经学习了微积分的朋友来说,这道题目是很简单的,甚至$f(x) > h_n (x)$可以说是“显然成立的”(因为$e^x$展开式接下来的无穷项都是正数)。但是,这道题目出在了2012年的广州一模理科数学中,就显得不那么简单了,得用初等的方法来证明它。而笔者最近养成了一个习惯,拿到一张数学试卷,不是先做选择题,而是先做最后一题。所以在参加广州一模时,先花了半个小时把最后一题(即本题)解决了。下面是我想到的三种解法。

一、数学归纳法

点击阅读全文...

3 Apr

我19岁了

生日祝福

生日祝福

2012年3月28日,我19岁了。

三月是一个很美的月份,我的很多值得纪念的日子都在三月发生,还有好友们都在三月接二连三地生日,几乎让我措手不及了,呵呵。我的同桌黄金,好友家益,我的好妹妹凤儿还有我自己都在这个月成为十九岁的孩子了。算起来,我应该是“最年轻”的了^_^

3-25-聚餐合照

3-25-聚餐合照

我的生日收到了许多人的祝福,这让我觉得很意外,我一直觉得,我不善于人际交往,所以不应该会有太多人关注我,但惊喜在我身上发生了。谢谢大家。(除了凤儿之外,因为我们俩说过永远不互说谢谢)

人生如梦,繁星流动,和你同路,从不相识开始心接近,默默以真挚待人......这是《朋友》的歌词,也是我们之间的真实写照。感谢上天,让我的人生之路上有你们的相伴,人生因为你们而更加精彩。愿能够与你们一起度过、奋斗过更多的日子!我们相约,我们是一辈子的朋友!

点击阅读全文...

14 Jan

诡异的Dirac函数

量子力学中有一个很诡异的函数——Dirac函数,它似乎在物理的不少领域都有很大作用,它也具有明显的物理意义,但认真地看它却又感觉它根本就不是函数!这个“似而非是”的东西究竟是什么呢?让我们从一个物理问题引入:

设想一条质量为1,长度为$2l$的均匀直线,很显然直线的密度为$\rho=\frac{1}{2l}$;将直线的中点放置于坐标轴的原点,我们就有
$$\rho(x)=\left\{ \begin{array}{c}\frac{1}{2l} (-l \leq x \leq l)\\0 (x < -l , x > l)\end{array}\right.$$

所以有
$$\int_{-\infty}^{+\infty} \rho(x)dx=1$$

点击阅读全文...

23 May

高考倒计时15天...

偷空上来写写心情^_^

还有15天

还有15天

点击阅读全文...

22 Jun

新兴之旅结束了

刚从天堂(镇)赶回来,这次大概一个星期的骑自行车游新兴之旅基本结束了。

这次行程我们总共穿越了太平、新城、洞口、车岗、六祖、东成、稔村、水台、勒竹、河头、天堂,共十一个镇,没有到过的地方还有共成、船岗、大江、里洞等,这些地方骑单车可能比较困难,有时间坐车去逛逛。

这次旅行可谓大有收获!各地的“到此一游”让我们增长了不少见识,加深了对我们家乡的了解;一路上大家嘻嘻哈哈,乐趣无穷,为我们的友谊增添了美好的点缀;到同学家玩玩闹闹,也加强了我们之间的联系,同样乐趣无穷;还有增加了探路找路的技术......

感谢所有陪我们一起玩、一起疯的同学,感谢所有给我们帮助的同学,人生因为你们的存在而更加精彩!

点击阅读全文...

24 Jun

为方轮自行车铺路

方轮自行车

方轮自行车

你见过正方形轮子的自行车吗?一般认为,只有圆形的车轮才能使我们的车子平稳向前移动,但这只是针对平直道路而言的。谁规定路一定是平的?只要铺好一条适当的道路,正方形车轮的自行车照样可以平稳前行!本文就让我们为方轮自行车铺一条路。

其实,方轮自行车已经不是新鲜玩意了,它早已出现在不少科技馆中。从图片中可以看到,它的特殊轨道是有许多段弧组成的,每一段弧的长度等于正方形的边长。车轮前行时,正方形会保持与弧形相切(确保不会打滑)。这样的路的形状是什么曲线呢?很幸运,它并不十分复杂,而且让人意外的是,它就是我们之前已经研究过的“悬链线”!原来,要设计这样的一个曲线的轨道,不需要多么高深的设计师,只需要我们手拿一条铁链,让它自由垂下......

点击阅读全文...