26 Dec

【学习清单】最近比较重要的GAN进展论文

这篇文章简单列举一下我认为最近这段时间中比较重要的GAN进展论文,这基本也是我在学习GAN的过程中主要去研究的论文清单。

生成模型之味

GAN是一个大坑,尤其像我这样的业余玩家,一头扎进去很久也很难有什么产出,尤其是各个大公司拼算力搞出来一个个大模型,个人几乎都没法玩了。但我总觉得,真的去碰了生成模型,才觉得自己碰到了真正的机器学习。这一点,不管在图像中还是文本中都是如此。所以,我还是愿意去关注生成模型。

当然,GAN不是生成模型的唯一选择,却是一个非常有趣的选择。在图像中至少有GAN、flow、pixelrnn/pixelcnn这几种选择,但要说潜力,我还是觉得GAN才是最具前景的,不单是因为效果,主要是因为它那对抗的思想。而在文本中,事实上seq2seq机制就是一个概率生成模型了,而pixelrnn这类模型,实际上就是模仿着seq2seq来做的,当然也有用GAN做文本生成的研究(不过基本上都涉及到了强化学习)。也就是说,其实在NLP中,生成模型也有很多成果,哪怕你主要是研究NLP的,也终将碰到生成模型。

好了,话不多说,还是赶紧把清单列一列,供大家参考,也作为自己的备忘。

点击阅读全文...

15 Feb

在这个系列中,我们尝试从能量的视角理解GAN。我们会发现这个视角如此美妙和直观,甚至让人拍案叫绝。

上一篇文章里,我们给出了一个直白而用力的能量图景,这个图景可以让我们轻松理解GAN的很多内容,换句话说,通俗的解释已经能让我们完成大部分的理解了,并且把最终的结论都已经写了出来。在这篇文章中,我们继续从能量的视角理解GAN,这一次,我们争取把前面简单直白的描述,用相对严密的数学语言推导一遍

跟第一篇文章一样,对于笔者来说,这个推导过程依然直接受启发于Bengio团队的新作《Maximum Entropy Generators for Energy-Based Models》

原作者的开源实现:https://github.com/ritheshkumar95/energy_based_generative_models

本文的大致内容如下:

1、推导了能量分布下的正负相对抗的更新公式;

2、比较了理论分析与实验采样的区别,而将两者结合便得到了GAN框架;

3、导出了生成器的补充loss,理论上可以防止mode collapse;

4、简单提及了基于能量函数的MCMC采样。

点击阅读全文...

20 Nov

不用L约束又不会梯度消失的GAN,了解一下?

不知道从什么时候开始,我发现我也掉到了GAN的大坑里边了,唉,争取早日能跳出来...

这篇博客介绍的是我最近提交到arxiv的一个关于GAN的新框架,里边主要介绍了一种对概率散度的新理解,并且基于这种理解推导出了一个新的GAN。整篇文章比较偏理论,对这个GAN的相关性质都做了完整的论证,自认为是一个理论完备的结果。

文章链接:https://papers.cool/arxiv/1811.07296

先摆结论:

1、论文提供了一种分析和构造概率散度的直接思路,从而简化了构建新GAN框架的过程。

2、推导出了一个称为GAN-QP的GAN框架$\eqref{eq:gan-gp-gd}$,这个GAN不需要像WGAN那样的L约束,又不会有SGAN的梯度消失问题,实验表明它至少有不逊色于、甚至优于WGAN的表现。

GAN-QP效果图

GAN-QP效果图

论文的实验最大做到了512x512的人脸生成(CelebA HQ),充分表明了模型的有效性(效果不算完美,但是模型特别简单)。有兴趣的朋友,欢迎继续阅读下去。

点击阅读全文...

2 Dec

从第一篇看下来到这里,我们知道所谓“最小熵原理”就是致力于降低学习成本,试图用最小的成本完成同样的事情。所以整个系列就是一个“偷懒攻略”。那偷懒的秘诀是什么呢?答案是“套路”,所以本系列又称为“套路宝典”。

本篇我们介绍图书馆里边的套路。

先抛出一个问题:词向量出现在什么时候?是2013年Mikolov的Word2Vec?还是是2003年Bengio大神的神经语言模型?都不是,其实词向量可以追溯到千年以前,在那古老的图书馆中...

图书馆一角(图片来源于百度搜索)

图书馆一角(图片来源于百度搜索)

走进图书馆

图书馆里有词向量?还是千年以前?在哪本书?我去借来看看。

放书的套路

其实不是哪本书,而是放书的套路。

很明显,图书馆中书的摆放是有“套路”的:它们不是随机摆放的,而是分门别类地放置的,比如数学类放一个区,文学类放一个区,计算机类也放一个区;同一个类也有很多子类,比如数学类中,数学分析放一个子区,代数放一个子区,几何放一个子区,等等。读者是否思考过,为什么要这么分类放置?分类放置有什么好处?跟最小熵又有什么关系?

点击阅读全文...

8 Jan

最近把优化算法跟动力学结合起来思考得越来越起劲了,这是优化算法与动力学系列的第三篇,我有预感还会有第4篇,敬请期待~

简单来个剧情回顾:第一篇中我们指出了其实SGD相当于常微分方程(ODE)的数值解法:欧拉法;第二篇我们还是数值解法的误差分析的角度,分析了为什么可以通过梯度来调节学习率,因此也就解释了RMSprop、Adam等算法中,用梯度调节学习率的原理。

本文将给出一个更统一的观点来看待这两个事情,并且试图回答一个更本质的问题:为什么是梯度下降?

(注:本文的讨论没有涉及到动量加速部分。)

点击阅读全文...

30 Jan

“看那挖坑的人,有啥不一样~”

“看那挖坑的人,有啥不一样~”

在这个系列中,我们尝试从能量的视角理解GAN。我们会发现这个视角如此美妙和直观,甚至让人拍案叫绝。

本视角直接受启发于Benjio团队的新作《Maximum Entropy Generators for Energy-Based Models》,这篇文章前几天出现在arxiv上。当然,能量模型与GAN的联系由来已久,并不是这篇文章的独创,只不过这篇文章做得仔细和完善一些。另外本文还补充了自己的一些理解和思考上去,力求更为易懂和完整。

作为第一篇文章,我们先来给出一个直白的类比推导:GAN实际上就是一场前仆后继(前挖后跳?)的“挖坑”与“跳坑”之旅~

总的来说,本文的大致内容如下:

1、给出了GAN/WGAN的清晰直观的能量图像;

2、讨论了判别器(能量函数)的训练情况和策略;

3、指出了梯度惩罚一个非常漂亮而直观的能量解释;

4、讨论了GAN中优化器的选择问题。

点击阅读全文...

20 Jan

从Wasserstein距离、对偶理论到WGAN

推土机哪家强?成本最低找Wasserstein

推土机哪家强?成本最低找Wasserstein

2017年的时候笔者曾写过博文《互怼的艺术:从零直达WGAN-GP》,从一个相对通俗的角度来介绍了WGAN,在那篇文章中,WGAN更像是一个天马行空的结果,而实际上跟Wasserstein距离没有多大关系。

在本篇文章中,我们再从更数学化的视角来讨论一下WGAN。当然,本文并不是纯粹地讨论GAN,而主要侧重于Wasserstein距离及其对偶理论的理解。本文受启发于著名的国外博文《Wasserstein GAN and the Kantorovich-Rubinstein Duality》,内容跟它大体上相同,但是删除了一些冗余的部分,对不够充分或者含糊不清的地方作了补充。不管怎样,在此先对前辈及前辈的文章表示致敬。

注:完整理解本文,应该需要多元微积分、概率论以及线性代数等基础知识。还有,本文确实长,数学公式确实多,但是,真的不复杂、不难懂,大家不要看到公式就吓怕了~)

点击阅读全文...

14 Mar

圆周率节快乐!|| 原来已经写了十年博客~

今天是3月14日,刚好是3.14,也就是很多理科生都喜欢调侃的“圆周率节”(π day)~

π能否表示为一个分数?

π能否表示为一个分数?

点击阅读全文...