10 Dec

Muon优化器赏析:从向量到矩阵的本质跨越

随着LLM时代的到来,学术界对于优化器的研究热情似乎有所减退。这主要是因为目前主流的AdamW已经能够满足大多数需求,而如果对优化器“大动干戈”,那么需要巨大的验证成本。因此,当前优化器的变化,多数都只是工业界根据自己的训练经验来对AdamW打的一些小补丁。

不过,最近推特上一个名为“Muon”的优化器颇为热闹,它声称比AdamW更为高效,且并不只是在Adam基础上的“小打小闹”,而是体现了关于向量与矩阵差异的一些值得深思的原理。本文让我们一起赏析一番。

Muon与AdamW效果对比(来源:推特@Yuchenj_UW)

Muon与AdamW效果对比(来源:推特@Yuchenj_UW)

点击阅读全文...

25 Dec

从谱范数梯度到新式权重衰减的思考

在文章《Muon优化器赏析:从向量到矩阵的本质跨越》中,我们介绍了一个名为“Muon”的新优化器,其中一个理解视角是作为谱范数正则下的最速梯度下降,这似乎揭示了矩阵参数的更本质的优化方向。众所周知,对于矩阵参数我们经常也会加权重衰减(Weight Decay),它可以理解为$F$范数平方的梯度,那么从Muon的视角看,通过谱范数平方的梯度来构建新的权重衰减,会不会能起到更好的效果呢?

那么问题来了,谱范数的梯度或者说导数长啥样呢?用它来设计的新权重衰减又是什么样的?接下来我们围绕这些问题展开。

基础回顾

谱范数(Spectral Norm),又称“$2$范数”,是最常用的矩阵范数之一,相比更简单的$F$范数(Frobenius Norm),它往往能揭示一些与矩阵乘法相关的更本质的信号,这是因为它定义上就跟矩阵乘法相关:对于矩阵参数$\boldsymbol{W}\in\mathbb{R}^{n\times m}$,它的谱范数定义为

点击阅读全文...

12 Jan

低秩近似之路(五):CUR

再次回到低秩近似之路上。在《低秩近似之路(四):ID》中,我们介绍了“插值分解(Interpolative Decomposition,ID)”,这是为矩阵$\boldsymbol{M}\in\mathbb{R}^{n\times m}$寻找$\boldsymbol{C}\boldsymbol{Z}$形式的近似的过程,其中$\boldsymbol{C}\in\mathbb{R}^{n\times r}$是矩阵$\boldsymbol{M}$的若干列,而$\boldsymbol{Z}\in\mathbb{R}^{r\times m}$是任意矩阵。

这篇文章我们将介绍CUR分解,它跟插值分解的思想一脉相承,都是以原始矩阵的行、列为“骨架”来构建原始矩阵的近似,跟ID只用行或列之一不同,CUR分解同时用到了行和列。

基本定义

其实这不是本站第一次出现CUR分解了。早在《Nyströmformer:基于矩阵分解的线性化Attention方案》我们就介绍过矩阵的Nyström近似,它实际上就是CUR分解,后来在《利用CUR分解加速交互式相似度模型的检索》还介绍了CUR分解在降低交互式相似度模型的检索复杂度的应用。

点击阅读全文...

14 Feb

生成扩散模型漫谈(二十九):用DDPM来离散编码

笔者前两天在arXiv刷到了一篇新论文《Compressed Image Generation with Denoising Diffusion Codebook Models》,实在为作者的天马行空所叹服,忍不住来跟大家分享一番。

如本文标题所述,作者提出了一个叫DDCM(Denoising Diffusion Codebook Models)的脑洞,它把DDPM的噪声采样限制在一个有限的集合上,然后就可以实现一些很奇妙的效果,比如像VQVAE一样将样本编码为离散的ID序列并重构回来。注意这些操作都是在预训练好的DDPM上进行的,无需额外的训练。

有限集合

由于DDCM只需要用到一个预训练好的DDPM模型来执行采样,所以这里我们就不重复介绍DDPM的模型细节了,对DDPM还不大了解的读者可以回顾我们《生成扩散模型漫谈》系列的(一)(二)(三)篇。

点击阅读全文...

8 Feb

MoE环游记:1、从几何意义出发

前两年福至心灵之下,开了一个“Transformer升级之路”系列,陆续分享了主流Transformer架构的一些改进工作和个人思考,得到了部份读者的认可。这篇文章开始,我们沿着同样的风格,介绍当前另一个主流架构MoE(Mixture of Experts)。

MoE的流行自不必多说,近来火出圈的DeepSeek-V3便是MoE架构,传言GPT-4也是MoE架构,国内最近出的一些模型也有不少用上了MoE。然而,虽然MoE的研究由来已久,但其应用长时间内都不愠不火,大致上是从去年初的《Mixtral of Experts》开始,MoE才逐渐吸引大家的注意力,其显著优点是参数量大,但训练和推理成本都显著低。

但同时MoE也有一些难题,如训练不稳定、负载不均衡、效果不够好等,这也是它早年没有流行起来的主要原因。不过随着这两年关注度的提升,这些问题在很大程度上已经得到解决,我们在接下来的介绍中会逐一谈到这些内容。

点击阅读全文...

21 Feb

MoE环游记:2、不患寡而患不均

在上一篇文章《MoE环游记:1、从几何意义出发》中,我们介绍了MoE的一个几何诠释,旨在通过Dense模型的最佳逼近出发来推导和理解MoE。同时在文末我们也说了,给出MoE的计算公式仅仅是开始,训练一个实际有效的MoE模型还有很多细节补,比如本文要讨论的负载均衡(Load Balance)问题。

负载均衡,即“不患寡而患不均”,说白了就是让每个Expert都在干活,并且都在干尽可能一样多的活,避免某些Expert浪费算力。负载均衡既是充分利用训练算力的需求,也是尽可能发挥MoE大参数量潜力的需求。

需求分析

我们知道,MoE的基本形式是
\begin{equation}\boldsymbol{y} = \sum_{i\in \mathop{\text{argtop}}_k \boldsymbol{\rho}} \rho_i \boldsymbol{e}_i\end{equation}

点击阅读全文...