鱼与熊掌兼得:融合检索和生成的SimBERT模型
By 苏剑林 | 2020-05-18 | 285546位读者 | 引用前段时间我们开放了一个名为SimBERT的模型权重,它是以Google开源的BERT模型为基础,基于微软的UniLM思想设计了融检索与生成于一体的任务,来进一步微调后得到的模型,所以它同时具备相似问生成和相似句检索能力。不过当时除了放出一个权重文件和示例脚本之外,未对模型原理和训练过程做进一步说明。在这篇文章里,我们来补充这部分内容。
UniLM
UniLM是一个融合NLU和NLG能力的Transformer模型,由微软在去年5月份提出来的,今年2月份则升级到了v2版本。我们之前的文章《从语言模型到Seq2Seq:Transformer如戏,全靠Mask》就简单介绍过UniLM,并且已经集成到了bert4keras中。
UniLM的核心是通过特殊的Attention Mask来赋予模型具有Seq2Seq的能力。假如输入是“你想吃啥”,目标句子是“白切鸡”,那UNILM将这两个句子拼成一个:[CLS] 你 想 吃 啥 [SEP] 白 切 鸡 [SEP],然后接如图的Attention Mask:
变分自编码器(六):从几何视角来理解VAE的尝试
By 苏剑林 | 2020-09-10 | 66704位读者 | 引用前段时间公司组织技术分享,轮到笔者时,大家希望我讲讲VAE。鉴于之前笔者也写过变分自编码器系列,所以对笔者来说应该也不是特别难的事情,因此就答应了下来,后来仔细一想才觉得犯难:怎么讲才好呢?
对于VAE来说,之前笔者有两篇比较系统的介绍:《变分自编码器(一):原来是这么一回事》和《变分自编码器(二):从贝叶斯观点出发》。后者是纯概率推导,对于不做理论研究的人来说其实没什么意义,也不一定能看得懂;前者虽然显浅一点,但也不妥,因为它是从生成模型的角度来讲的,并没有说清楚“为什么需要VAE”(说白了,VAE可以带来生成模型,但是VAE并不一定就为了生成模型),整体风格也不是特别友好。
笔者想了想,对于大多数不了解但是想用VAE的读者来说,他们应该只希望大概了解VAE的形式,然后想要知道“VAE有什么作用”、“VAE相比AE有什么区别”、“什么场景下需要VAE”等问题的答案,对于这种需求,上面两篇文章都无法很好地满足。于是笔者尝试构思了VAE的一种几何图景,试图从几何角度来描绘VAE的关键特性,在此也跟大家分享一下。
为什么梯度裁剪能加速训练过程?一个简明的分析
By 苏剑林 | 2020-06-05 | 32403位读者 | 引用本文介绍来自MIT的一篇ICLR 2020满分论文《Why gradient clipping accelerates training: A theoretical justification for adaptivity》,顾名思义,这篇论文就是分析为什么梯度裁剪能加速深度学习的训练过程。原文很长,公式很多,还有不少研究复杂性的概念,说实话对笔者来说里边的大部分内容也是懵的,不过大概能捕捉到它的核心思想:引入了比常用的L约束更宽松的约束条件,从新的条件出发论证了梯度裁剪的必要性。本文就是来简明分析一下这个过程,供读者参考。
梯度裁剪
假设需要最小化的函数为$f(\theta)$,$\theta$就是优化参数,那么梯度下降的更新公式就是
\begin{equation}\theta \leftarrow \theta-\eta \nabla_{\theta} f(\theta)\end{equation}
其中$\eta$就是学习率。而所谓梯度裁剪(gradient clipping),就是根据梯度的模长来对更新量做一个缩放,比如
\begin{equation}\theta \leftarrow \theta- \eta \nabla_{\theta} f(\theta)\times \min\left\{1, \frac{\gamma}{\Vert \nabla_{\theta} f(\theta)\Vert}\right\}\label{eq:clip-1}\end{equation}
或者
\begin{equation}\theta \leftarrow \theta- \eta \nabla_{\theta} f(\theta)\times \frac{\gamma}{\Vert \nabla_{\theta} f(\theta)\Vert+\gamma}\label{eq:clip-2}\end{equation}
其中$\gamma > 0$是一个常数。这两种方式都被视为梯度裁剪,总的来说就是控制更新量的模长不超过一个常数,第二种形式也跟RMSProp等自适应学习率优化器相关。此外,更精确地,我们有下面的不等式
\begin{equation}\frac{1}{2}\min\left\{1, \frac{\gamma}{\Vert \nabla_{\theta} f(\theta)\Vert}\right\}\leq \frac{\gamma}{\Vert \nabla_{\theta} f(\theta)\Vert+\gamma}\leq \min\left\{1, \frac{\gamma}{\Vert \nabla_{\theta} f(\theta)\Vert}\right\}\end{equation}
也就是说两者是可以相互控制的,所以其实两者基本是等价的。
动手做个DialoGPT:基于LM的生成式多轮对话模型
By 苏剑林 | 2020-09-07 | 100644位读者 | 引用如何应对Seq2Seq中的“根本停不下来”问题?
By 苏剑林 | 2020-06-16 | 61824位读者 | 引用在Seq2Seq的解码过程中,我们是逐个token地递归生成的,直到出现<eos>标记为止,这就是所谓的“自回归”生成模型。然而,研究过Seq2Seq的读者应该都能发现,这种自回归的解码偶尔会出现“根本停不下来”的现象,主要是某个片段反复出现,比如“今天天气不错不错不错不错不错...”、“你觉得我说得对不对不对不对不对不对...”等等,但就是死活不出现<eos>标记。ICML 2020的文章《Consistency of a Recurrent Language Model With Respect to Incomplete Decoding》比较系统地讨论了这个现象,并提出了一些对策,本文来简单介绍一下论文的主要内容。
解码算法
对于自回归模型来说,我们建立的是如下的条件语言模型
\begin{equation}p(y_t|y_{\lt t}, x)\label{eq:p}\end{equation}
那么解码算法就是在已知上述模型时,给定$x$来输出对应的$y=(y_1,y_2,\dots,y_T)$来。解码算法大致可以分为两类:确定性解码算法和随机性解码算法,原论文分别针对这两类解码讨论来讨论了“根本停不下来”问题,所以我们需要来了解一下这两类解码算法。
从采样看优化:可导优化与不可导优化的统一视角
By 苏剑林 | 2020-06-23 | 54928位读者 | 引用不少读者都应该知道,损失函数与评测指标的不一致性是机器学习的典型现象之一,比如分类问题中损失函数用交叉熵,评测指标则是准确率或者F1,又比如文本生成中损失函数是teacher-forcing形式的交叉熵,评测指标则是BLEU、ROUGE等。理想情况下,当然是评测什么指标,我们就去优化这个指标,然而评测指标通常都是不可导的,而我们多数都是使用基于梯度的优化器,这就要求最小化的目标必须是可导的,这是不一致性的来源。
前些天在arxiv刷到了一篇名为《MLE-guided parameter search for task loss minimization in neural sequence modeling》的论文,顾名思义,它是研究如何直接优化文本生成的评测指标的。经过阅读,笔者发现这篇论文很有价值,事实上它提供了一种优化评测指标的新思路,适用范围并不局限于文本生成中。不仅如此,它甚至还包含了一种理解可导优化与不可导优化的统一视角。
采样视角
首先,我们可以通过采样的视角来重新看待优化问题:设模型当前参数为$\theta$,优化目标为$l(\theta)$,我们希望决定下一步的更新量$\Delta\theta$,为此,我们先构建分布
\begin{equation}p(\Delta\theta|\theta)=\frac{e^{-[l(\theta + \Delta\theta) - l(\theta)]/\alpha}}{Z(\theta)},\quad Z(\theta) = \int e^{-[l(\theta + \Delta\theta) - l(\theta)]/\alpha} d(\Delta\theta)\end{equation}
积分梯度:一种新颖的神经网络可视化方法
By 苏剑林 | 2020-06-28 | 89199位读者 | 引用本文介绍一种神经网络的可视化方法:积分梯度(Integrated Gradients),它首先在论文《Gradients of Counterfactuals》中提出,后来《Axiomatic Attribution for Deep Networks》再次介绍了它,两篇论文作者都是一样的,内容也大体上相同,后一篇相对来说更易懂一些,如果要读原论文的话,建议大家优先读后一篇。当然,它已经是2016~2017年间的工作了,“新颖”说的是它思路上的创新有趣,而不是指最近发表。
所谓可视化,简单来说就是对于给定的输入$x$以及模型$F(x)$,我们想办法指出$x$的哪些分量对模型的决策有重要影响,或者说对$x$各个分量的重要性做个排序,用专业的话术来说那就是“归因”。一个朴素的思路是直接使用梯度$\nabla_x F(x)$来作为$x$各个分量的重要性指标,而积分梯度是对它的改进。然而,笔者认为,很多介绍积分梯度方法的文章(包括原论文),都过于“生硬”(形式化),没有很好地突出积分梯度能比朴素梯度更有效的本质原因。本文试图用自己的思路介绍一下积分梯度方法。
线性Attention的探索:Attention必须有个Softmax吗?
By 苏剑林 | 2020-07-04 | 214854位读者 | 引用众所周知,尽管基于Attention机制的Transformer类模型有着良好的并行性能,但它的空间和时间复杂度都是$\mathcal{O}(n^2)$级别的,$n$是序列长度,所以当$n$比较大时Transformer模型的计算量难以承受。近来,也有不少工作致力于降低Transformer模型的计算量,比如模型剪枝、量化、蒸馏等精简技术,又或者修改Attention结构,使得其复杂度能降低到$\mathcal{O}(n\log n)$甚至$\mathcal{O}(n)$。
前几天笔者读到了论文《Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention》,了解到了线性化Attention(Linear Attention)这个探索点,继而阅读了一些相关文献,有一些不错的收获,最后将自己对线性化Attention的理解汇总在此文中。
Attention
当前最流行的Attention机制当属Scaled-Dot Attention,形式为
\begin{equation}Attention(\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V}) = softmax\left(\boldsymbol{Q}\boldsymbol{K}^{\top}\right)\boldsymbol{V}\label{eq:std-att}\end{equation}
这里的$\boldsymbol{Q}\in\mathbb{R}^{n\times d_k}, \boldsymbol{K}\in\mathbb{R}^{m\times d_k}, \boldsymbol{V}\in\mathbb{R}^{m\times d_v}$,简单起见我们就没显式地写出Attention的缩放因子了。本文我们主要关心Self Attention场景,所以为了介绍上的方便统一设$\boldsymbol{Q}, \boldsymbol{K}, \boldsymbol{V}\in\mathbb{R}^{n\times d}$,一般场景下都有$n > d$甚至$n\gg d$(BERT base里边$d=64$)。
最近评论