29 Nov

轻便的深度学习分词系统:NNCWS v0.1

好吧,我也做了一回标题党...其实本文的分词系统是一个三层的神经网络模型,因此只是“浅度学习”,写深度学习是显得更有吸引力。NNCWS的意思是Neutral Network based Chinese Segment System,基于神经网络的中文分词系统,Python写的,目前完全公开,读者可以试用。

闲话多说

这个程序有什么特色?几乎没有!本文就是用神经网络结合字向量实现了一个ngrams形式(程序中使用了7-grams)的分词系统,没有像《【中文分词系列】 4. 基于双向LSTM的seq2seq字标注》那样使用了高端的模型,也没有像《【中文分词系列】 5. 基于语言模型的无监督分词》那样可以无监督训练,这里纯粹是一个有监督的简单模型,训练语料是2014年人民日报标注语料。

点击阅读全文...

23 Mar

梯度下降和EM算法:系出同源,一脉相承

PS:本文就是梳理了梯度下降与EM算法的关系,通过同一种思路,推导了普通的梯度下降法、pLSA中的EM算法、K-Means中的EM算法,以此表明它们基本都是同一个东西的不同方面,所谓“横看成岭侧成峰,远近高低各不同”罢了。

在机器学习中,通常都会将我们所要求解的问题表示为一个带有未知参数的损失函数(Loss),如平均平方误差(MSE),然后想办法求解这个函数的最小值,来得到最佳的参数值,从而完成建模。因将函数乘以-1后,最大值也就变成了最小值,因此一律归为最小值来说。如何求函数的最小值,在机器学习领域里,一般会流传两个大的方向:1、梯度下降;2、EM算法,也就是最大期望算法,一般用于复杂的最大似然问题的求解。

在通常的教程中,会将这两个方法描述得迥然不同,就像两大体系在分庭抗礼那样,而EM算法更是被描述得玄乎其玄的感觉。但事实上,这两个方法,都是同一个思路的不同例子而已,所谓“本是同根生”,它们就是一脉相承的东西。

让我们,先从远古的牛顿法谈起。

牛顿迭代法

给定一个复杂的非线性函数$f(x)$,希望求它的最小值,我们一般可以这样做,假定它足够光滑,那么它的最小值也就是它的极小值点,满足$f'(x_0)=0$,然后可以转化为求方程$f'(x)=0$的根了。非线性方程的根我们有个牛顿法,所以
\begin{equation}x_{n+1} = x_{n} - \frac{f'(x_n)}{f''(x_n)}\end{equation}

点击阅读全文...

17 May

如何“扒”站?手把手教你爬百度百科~

最近有需求要爬一些儿童故事类的语料用来训练词向量,因此找了一些童话故事网把整站的童话文章爬了下来。下面分享一下用Python实现的这个过程,并把之前爬取百度百科的经验,结合着分享出来。本教程适合于以下需求:需要遍历爬取指定的网站、并且指定网站没有反爬虫措施。在这种前提之下,所考验我们的仅仅是遍历算法编程技巧了。

假设

再次表明我们的假设:

1、需要遍历整个网站来爬取我们需要的信息;

2、网站没有反爬虫措施;

3、网站的所有页面,总可以通过网站首页,逐步点击超链接来到达。

点击阅读全文...

13 Oct

基于fine tune的图像分类(百度分狗竞赛)

baidu_jingsai

baidu_jingsai

前两年百度的大数据竞赛都是自然语言处理方面的,今年画风一转,变成了图像的细颗粒度分类,赛题内容就是将宠物狗归为100类中的其中一类。这个任务本身是很平凡的,做法也很常规,无外乎就是数据扩增、imagenet模型的fine tune、模型集成三个方面。笔者并不擅长于模型集成,只做了前面两个步骤,成绩也非常一般(准确率80%上下)。但感觉里边的某些代码可能对读者有帮助,遂共享一翻。下面结合着代码来讲解。

比赛官网(随时有失效的可能):http://js.baidu.com

模型

模型主要用tensorflow+keras实现。首先自然是导入各种模块

#! -*- coding:utf-8 -*-

import numpy as np
from scipy import misc
import tensorflow as tf
from keras.applications.xception import Xception,preprocess_input
from keras.layers import Input,Dense,Lambda,Embedding
from keras.layers.merge import multiply
from keras import backend as K
from keras.models import Model
from keras.optimizers import SGD
from tqdm import tqdm
import glob
np.random.seed(2017)
tf.set_random_seed(2017)

点击阅读全文...

27 Jun

从动力学角度看优化算法(一):从SGD到动量加速

在这个系列中,我们来关心优化算法,而本文的主题则是SGD(stochastic gradient descent,随机梯度下降),包括带Momentum和Nesterov版本的。对于SGD,我们通常会关心的几个问题是:

SGD为什么有效?
SGD的batch size是不是越大越好?
SGD的学习率怎么调?
Momentum是怎么加速的?
Nesterov为什么又比Momentum稍好?
...

这里试图从动力学角度分析SGD,给出上述问题的一些启发性理解。

梯度下降

既然要比较谁好谁差,就需要知道最好是什么样的,也就是说我们的终极目标是什么?

训练目标分析

假设全部训练样本的集合为$\boldsymbol{S}$,损失度量为$L(\boldsymbol{x};\boldsymbol{\theta})$,其中$\boldsymbol{x}$代表单个样本,而$\boldsymbol{\theta}$则是优化参数,那么我们可以构建损失函数
$$L(\boldsymbol{\theta}) = \frac{1}{|\boldsymbol{S}|}\sum_{\boldsymbol{x}\in\boldsymbol{S}} L(\boldsymbol{x};\boldsymbol{\theta})\tag{1}$$
训练的终极目标,则是找到$L(\boldsymbol{\theta})$的一个全局最优点(这里的最优是“最小”的意思)。

点击阅读全文...

20 Dec

《从动力学角度看优化算法(一):从SGD到动量加速》一文中,我们提出SGD优化算法跟常微分方程(ODE)的数值解法其实是对应的,由此还可以很自然地分析SGD算法的收敛性质、动量加速的原理等等内容。

在这篇文章中,我们继续沿着这个思路,去理解优化算法中的自适应学习率算法。

RMSprop

首先,我们看一个非常经典的自适应学习率优化算法:RMSprop。RMSprop虽然不是最早提出的自适应学习率的优化算法,但是它却是相当实用的一种,它是诸如Adam这样的更综合的算法的基石,通过它我们可以观察自适应学习率的优化算法是怎么做的。

算法概览

一般的梯度下降是这样的:
$$\begin{equation}\boldsymbol{\theta}_{n+1}=\boldsymbol{\theta}_{n} - \gamma \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_{n})\end{equation}$$
很明显,这里的$\gamma$是一个超参数,便是学习率,它可能需要在不同阶段做不同的调整。

而RMSprop则是
$$\begin{equation}\begin{aligned}\boldsymbol{g}_{n+1} =& \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_{n})\\
\boldsymbol{G}_{n+1}=&\lambda \boldsymbol{G}_{n} + (1 - \lambda) \boldsymbol{g}_{n+1}\otimes \boldsymbol{g}_{n+1}\\
\boldsymbol{\theta}_{n+1}=&\boldsymbol{\theta}_{n} - \frac{\tilde{\gamma}}{\sqrt{\boldsymbol{G}_{n+1} + \epsilon}}\otimes \boldsymbol{g}_{n+1}
\end{aligned}\end{equation}$$

点击阅读全文...

7 Oct

深度学习中的Lipschitz约束:泛化与生成模型

前言:去年写过一篇WGAN-GP的入门读物《互怼的艺术:从零直达WGAN-GP》,提到通过梯度惩罚来为WGAN的判别器增加Lipschitz约束(下面简称“L约束”)。前几天遐想时再次想到了WGAN,总觉得WGAN的梯度惩罚不够优雅,后来也听说WGAN在条件生成时很难搞(因为不同类的随机插值就开始乱了...),所以就想琢磨一下能不能搞出个新的方案来给判别器增加L约束。

闭门造车想了几天,然后发现想出来的东西别人都已经做了,果然是只有你想不到,没有别人做不到。主要包含在这两篇论文中:《Spectral Norm Regularization for Improving the Generalizability of Deep Learning》《Spectral Normalization for Generative Adversarial Networks》

所以这篇文章就按照自己的理解思路,对L约束相关的内容进行简单的介绍。注意本文的主题是L约束,并不只是WGAN。它可以用在生成模型中,也可以用在一般的监督学习中。

L约束与泛化

扰动敏感

记输入为$x$,输出为$y$,模型为$f$,模型参数为$w$,记为
$$\begin{equation}y = f_w(x)\end{equation}$$
很多时候,我们希望得到一个“稳健”的模型。何为稳健?一般来说有两种含义,一是对于参数扰动的稳定性,比如模型变成了$f_{w+\Delta w}(x)$后是否还能达到相近的效果?如果在动力学系统中,还要考虑模型最终是否能恢复到$f_w(x)$;二是对于输入扰动的稳定性,比如输入从$x$变成了$x+\Delta x$后,$f_w(x+\Delta x)$是否能给出相近的预测结果。读者或许已经听说过深度学习模型存在“对抗攻击样本”,比如图片只改变一个像素就给出完全不一样的分类结果,这就是模型对输入过于敏感的案例。

点击阅读全文...

8 Jan

最近把优化算法跟动力学结合起来思考得越来越起劲了,这是优化算法与动力学系列的第三篇,我有预感还会有第4篇,敬请期待~

简单来个剧情回顾:第一篇中我们指出了其实SGD相当于常微分方程(ODE)的数值解法:欧拉法;第二篇我们还是数值解法的误差分析的角度,分析了为什么可以通过梯度来调节学习率,因此也就解释了RMSprop、Adam等算法中,用梯度调节学习率的原理。

本文将给出一个更统一的观点来看待这两个事情,并且试图回答一个更本质的问题:为什么是梯度下降?

(注:本文的讨论没有涉及到动量加速部分。)

点击阅读全文...