30 Aug

折腾windows 8和ubuntu 12

这是一篇用Windows 8完成的文章。

快开学了,华师2号就要报道了,所以就提前入手一台手提电脑,联想Z575AM-ASI,四千元的AMD,4核,64位机器。

我的台式机已经是六年前的产品了,联想的家悦系列,只有512MB内存。所以相比之下,这新机器配置还过得去吧,对于CPU,我个人还是倾向于AMD的,因为我的那台家悦台式也是AMD的CPU,所以对它很有好感。新兴的联想专卖店没有AMD手提,所以还得提前向他们预订。

Windows8

手提本身没有预装操作系统,专卖店很随手地为我装了一个win7,而且还只是ghost版本的,时不时会卡死,感觉很不好,刚好前些日子在网上开始发布Windows8了,所以就马上把Win7格掉,装上Windows8了。安装过程很顺利,由于还没有正式发布,所以还没有激活,这段时间纯粹体验中。等正式版发布了,再计划买一个正版光盘吧

点击阅读全文...

22 Sep

军训中的数学——握手奇数次的人数

军训是比较辛苦,可是总有一些无聊的时刻。比如我们每次集合后的第一件事基本上都是站军姿,少则五分钟,长则二三十分钟,在这段时间里,头脑总得找点东西想才行,不然一动不动的,非常难熬。我就是在军训那些无聊的时刻里通过想数学问题来度过的。比如一有空余时间,我的头脑就浮现着级数$\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{p}$、哥德巴赫猜想、稳定性问题啦等等,并不是说要做出什么大发现,只是为了渡过无聊时间,也是对自己的思维能力和想象能力的锻炼吧。

之前提到过,昨天我们的“格斗方阵”去大学城表演了。在去大学城的过程中,我的一位“战友”问了我一个这样的问题:

在一个相互握手的人群中,握手奇数次的人总是有偶数个。每两个人可以握多于一次的手

他还说这是爱因斯坦提问的。这可把我的兴致给调动起来了。(后来我在网上搜索,却发现不了这个问题跟爱因斯坦的任何联系...)下边是我的颇有戏剧性的思考过程。

人群的握手问题

人群的握手问题

点击阅读全文...

6 Oct

哥德巴赫猜想浅谈1

高斯说过“数学是科学的皇后,而算术则是数学的女王。”这里的“算术”,其实就是我们现在所说的数论。从很小的时候开始,我便对数论情有独钟。虽然后来接触了很多更为有趣的数学分支,但是对数学的热情依然不减。我想,这大概是因为小时候的情结吧。小学时候,小小年纪的我,刚刚学完素数、合数、约数、整除等等概念,对数字尤其有兴趣。我想,在那时候我唯一能够读懂的数学难题只有数论这一领域吧。比如费马大定理,$x^n+y^n=z^n$,对于n大于2没有正整数解,很容易就知道它在讲什么;再比如,哥德巴赫猜想,每个大于4的偶数都可以分拆成两个奇素数之和,也很简单就弄懂它讲的是什么。所以,小小的我看懂了这些问题后就饶有兴致地摆弄数字啦,也许正因为如此,才让我对数字乃至对数学都有深厚的爱。

哥德巴赫猜想,无疑是数论中的一个璀璨明珠,可是目前来讲,它还是可望不可即的。一个看似如此简单的猜想,却困惑了数学家几百年,至今无人能解。尽管如此,我还是愿意细细地研究它,慢慢地品味它,在“论证”、或者说验算它的时候,欣赏到数学那神秘的美妙。本文主要就是研究给定偶数的“哥德巴赫分拆数”,即通过实际验算得出每个偶数分拆为两个素数之和的不同分拆方式的数目,比如6=3+3,只有一种分拆方式;8=3+5=5+3;有两种分拆方式;10=3+7=5+5=7+3,有三种分拆方式;等等。偶数2n的分拆数记为$G_2 (2n)$。

(这里定义的“分拆数”跟网上以及一般文献中的定义不同,这里把3+5和5+3看成是两种分拆方式,而网上一般的定义是只看成一种。我这里的定义的好处在于分拆方式的数目实际表示了分拆中涉及到的所有素数的个数。)

哥德巴赫猜想很难,这话没错,但是事实上哥德巴赫猜想是一个非常弱的命题。它说“每个大于4的偶数至少可以分拆成两个奇素数之和”,用上面的术语来说,就是每个偶数的“哥德巴赫分拆数”大于或等于1。可是经过实际验算发现,偶数越大,它的哥德巴赫分拆数越大,两者整体上是呈正相关关系的,比如$G_2 (100)=12,G_2 (1000)=56,G_2 (10000)=254$......所以,从强弱程度上来讲,这和“少于n的素数至少有一个”是差不多的(当然,难度有天壤之别)。

点击阅读全文...

26 Nov

《环球科学》:超越费曼图

虽然文章的大部分内容我都还无法弄懂,但是这里边讲述的振奋人心的内容让我决定把它转载过来。文章说,将大自然的各种力统一起来,或许没有物理学家原来所想的那么困难。

撰文∕ 伯尔尼(Zvi Bern)、狄克森(Lance J. Dixon)寇索尔(David A. Kosower)
翻译∕ 高涌泉(台湾大学物理系教授)
提供/ 科学人(Scientific American繁体中文版)

重点提要

物理学家对于粒子碰撞的了解,最近经历了一场宁静革命。知名物理学家费曼所引入的观念对于很多应用而言已到达极限。作者与合作者已经发展出新的方法。

物理学家利用新方法,可以更可靠地描述在大强子对撞机(LHC)那种极端条件下普通粒子的行为,这将帮助实验学家寻找新粒子与新作用力。

新方法还有更为深刻的应用:它让一种于1980年代被物理学家放弃的统一理论有了新生命,重力看起来像是双份的强核力一起作用。

春天某个晴朗的日子,本文作者狄克森从英国伦敦地铁的茂恩都站进入地铁,想前往希斯洛机场。伦敦地铁每天有300万名乘客,他瞧着其中一位陌生人,无聊地想着:这位老兄会从温布尔登站离开地铁的机率有多大?由于此人可能搭上任何一条地铁路线,所以该如何推算这个机率呢?他想了一会,领悟到这个问题其实跟粒子物理学家所面对的麻烦很像,那就是该如何预测现代高能实验中粒子碰撞的后果。

欧洲核子研究组织(CERN)的大强子对撞机(LHC)是这个时代最重要的探索实验;它让质子以近乎光速前进并相撞,然后研究碰撞后的碎片。我们知道建造对撞机及侦测器得用上最尖端的技术,然而较不为人知的是,解释侦测器的发现同样也是极为困难的挑战。乍看之下,它不应该那么困难才对,因为基本粒子的标准模型早已确立,理论学家也一直用此模型来预测实验的结果,而且理论预测所依赖的是著名物理学家费曼(Richard P. Feynman)早在60多年前就发展出来的计算技巧,每位粒子物理学家在研究生阶段都学过费曼的技巧;关于粒子物理的每本科普书、每篇科普文章,也都借用了费曼的概念。

点击阅读全文...

16 Oct

相对论和量子力学的初探

=====大学学习=====

上大学已经一个多月了,除去军训的两周和国庆放假的一周,到现在已经是第三周上课了。我是数学专业的,由于是那个勷勤创新班,它希望我们都向研究型数学的方向发展,所以给我们“更多的自由研究时间”,所以课程比一般的班还少一点。由于高中已经对高等数学有个大概的了解,所以一开始让很多同学都喊苦的数学分析、解析几何于我而言都还是比较容易接受的。但从另外一个角度上来讲,我感觉我学得快的原因,倒不全是以前的积累,而是因为个人的学习方式。我不喜欢跟着老师的步伐走,我喜欢而且需要深入地思考和理解一个问题,希冀达到一理通百理明的效果,而不是做完一题紧接着下一题。因为我认为这种竞赛式的学习不能给我们带来实质性的进步,而且有可能抹杀了我们的创造力。

1979年爱因斯坦邮票

1979年爱因斯坦邮票

没有应用的数学是很枯燥乏味的,数学不能脱离物理、化学等领域。当然“应用”这个词有很广泛的意思,它不一定在实际生活中起到了立竿见影的作用,而是所有在非数学领域中体现了数学之美的例子都可以叫做数学应用,或者有趣的数学。所以,在经历了一两周纯粹地研究数学之后,我感觉我不能再这样下去了,与其零散地涉猎各个方面的知识,倒不如现在开始就系统地学习一些学科以外的科学知识。于是,我决定重拾高中还没有完成的事情——学习相对论和量子力学——所谓现代物理的两大支柱。

点击阅读全文...

24 Oct

行星密度与其公转周期(更新)

===我与《天文爱好者》不得不说的故事===

去年在订阅2012年的《天文爱好者》时,考虑到之后就要上大学了,所以只是订了半年,因此过了今年六月我就没有看新的《天文爱好者》了。暑假的两个月,还有九月、十月,将近四个月没有看它了,我本以为我已经适应了没有天爱的日子。

大概一个星期前,我在天爱的淘宝网重新买了最近四个月的《天文爱好者》,18日下午,我再见了它。那天晚上,我突然觉得很感动,有种感慨万千的感觉。虽然这么久没有看了,但是再看的感觉是如此的熟悉,如此的温馨。我原来觉得天文只是我的一个业余兴趣,如同生物化学那样,但在那瞬间我明白了我真的爱着天文,而且时间和空间的距离并不能减少我的爱!在那时,我决定了,我一定要从事天文相关专业——虽然我只是一个数学系学生

==========行星周期下限==========

(2012.10.25:zwhzjh提出攝动力公式有错误,修正了攝动力的计算公式,之前写少了一个因子2,还有在最后的实际检验时,为了追求结果的合理性,忽略了方法的科学性,现在已经进行了修正,欢迎各位提更多意见。)

首颗被发现的系外行星

首颗被发现的系外行星

本文要探讨的东西是我在阅读《天文爱好者》的时候偶然发现的。在发现系外行星以前,人们通常都认为像木星这样的气态巨行星,公转周期都应该在十年以上。因此当瑞士天文学家米歇尔·迈耶和迪戴尔·邱洛兹发现第一颗系外行星时,他们简直无法确信自己的发现,因为这颗类木行星的公转周期只有短短的4.2天!但是经过确认,这的确是一颗系外行星,颠覆了过去的看法。我饶有兴致地研究下去,企图推导出某一密度行星的公转周期下限

各位读者不妨先估计一下,它会与什么物理量有关?行星质量?母星质量?还是...?

点击阅读全文...

31 Oct

《新理解矩阵2》:矩阵是什么?

上一篇文章中我从纯代数运算的角度来讲述了我对矩阵的一个理解,可以看到,我们赋予了矩阵相应的运算法则,它就在代数、分析等领域显示出了巨大作用。但是纯粹的代数是不足够的,要想更加完美,最好是找到相应的几何对象能够与之对应,只有这样,我们才能够直观地理解它,以达到得心应手的效果。

几何理解

我假设读者已经看过孟岩的《理解矩阵》三篇文章,所以更多的细节我就不重复了。我们知道,矩阵A

$$\begin{pmatrix}a_{11} & a_{12} \\ a_{21} & a_{22}\end{pmatrix}$$

事实上由两个向量$[a_{11},a_{21}]^T$和$[a_{12},a_{22}]^T$(这里的向量都是列向量)组成,它描述了一个平面(仿射)坐标系。换句话说,这两个向量其实是这个坐标系的两个基,而运算$y=Ax$则是告诉我们,在$A$这个坐标系下的x向量,在$I$坐标系下是怎样的。这里的$I$坐标系就是我们最常用的直角坐标系,也就是说,任何向量(包括矩阵里边的向量),只要它前面没有矩阵作用于它,那么它都是在直角坐标系下度量出来的。

点击阅读全文...

4 Nov

《新理解矩阵3》:行列式的点滴

本文的最新版本位于:http://kexue.fm/archives/2208/

亲爱的读者朋友们,科学空间版的理解矩阵已经来到了BoJone认为是最激动人心的部分了,那就是关于行列式的叙述。这部分内容没有在孟岩的文章中被谈及到,是我自己结合了一些书籍和网络资源而得出的一些看法。其中最主要的书籍是《数学桥》,而追本溯源,促进我研究这方面的内容的是matrix67的那篇《教材应该怎么写》。本文包含了相当多的直观理解内容,在我看来,这部分内容也许不是正统的观点,但是至少在某种程度上能够促进我们对线性代数的理解。

大多数线性代数引入行列式的方式都是通过讲解线性方程组的,这种方式能够让学生很快地掌握它的计算,以及给出了一个最实际的应用(就是解方程组啦)。但是这很容易让读者走进一个误区,让他们认为线性代数就是研究解方程组的。这样并不能让读者真正理解到它的本质,而只有当我们对它有了一个直观熟练的感觉,我们才能很好地运用它。

行列式的出现其实是为了判断一个矩阵是否可逆的,它通过某些方式构造出一个“相对简单”的函数来达到这个目的,这个函数就是矩阵的行列式。让我们来反思一下,矩阵可逆意味着什么呢?之前已经提到过,矩阵是从一个点到另外一个点的变换,那么逆矩阵很显然就是为了把它变换回来。我们还说过,“运动是相对的”,点的变换又可以用坐标系的变换来实现。但是,按照我们的直觉,不同的坐标系除了有那些运算上的复杂度不同(比如一般的仿射坐标系计算点积比直角坐标系复杂)之外,不应该有其他的不同了,用物理的语言说,就是一切坐标系都是平权的。那么给出一个坐标系,可以自然地变换到另外一个坐标系,也可以自然地将它变换回来。既然矩阵是这种坐标系的一个描述,那么矩阵不可逆的唯一可能性就是:

这个$n$阶矩阵的$n$个列向量根本就构不成一个$n$维空间的坐标系。

点击阅读全文...