8 Jul

一道比较函数大小的题目

前几天刚结束的云浮高二期末考数学试卷中,有一道题目让我比较深刻。因为在当时我无法去证明它,只是用了举例子的方法得出了答案。刚才思考了一下,在此给出证明过程。题目如下:

定义在(0,+∞)的函数f(x)满足$x f'(x) \leq f(x)$,对于任意的0 < a < b,比较$a f(b)$和$b f(a)$的大小。

点击阅读全文...

19 Jul

奥赛版《春天里》

相信不少读者已经听过《春天里》这首歌,在今年的全国天文奥赛和这次天文夏令营中,这首歌也成了热门。不过热门的不是原版,而是经过改编后的奥赛版《春天里》。请看————

春天里

还记得许多年前的春天
那时我还没有天文奥赛
没有天文馆就没有她
没有24小时热水的家
可当初的我们那么快乐
虽然只有一架破望远镜
在固原在杭州在广州
唱着那无人问津的歌谣

点击阅读全文...

25 Jul

关于e,i,π的那些鲜为人知的事儿...

科学空间曾经提到过$e^{i\pi}+1=0$这条被誉为“数学最卓越的公式的公式之一”的公式,而读者们或许很就之前就已经听说过甚至证明过它了。那么,各位读者是否还知道其他的一些关于e,i,π的轶事呢?例如你知道$i^i$等于多少吗?还有$i^{1//i}$呢?

本文就让我们来欣赏一次数学之美!

点击阅读全文...

23 Oct

2011年全国高中数学联赛

16日开考。我们15日出发,坐了将近五个小时的车到惠州(第八中学)参加考试。然而让我很无奈的是,虽然之前做了一定准备,这次考试发挥出奇的差,所以,拿奖只是个梦...^_^

后来才发现,我很悲剧地考了A卷,再看一下B卷的题目,发现那更合我胃口,更无语了...难道是运气在上一年用光了?

其实物理竞赛更适合我,只是那偏远的地方连资格都被忽略了...

不再说什么了,还是老老实实在科学空间与大家分享、讨论科学问题更开心。

下面附上今年的联赛题目:

点击阅读全文...

19 Nov

[欧拉数学]素数定理及加强

1798年法国数学家勒让德提出:
$$\pi(n)\sim\frac{n}{\ln n}$$

这个式子被成为“素数定理”(the Prime Number Theorem, PNT)。它表达的是什么意思呢?其中$\pi(N)$指的是不大于N的素数个数,$\frac{N}{\ln N}$是一个计算结果,符号~叫做“渐近趋于”,整个式子意思就是“不大于N的素数个数渐近趋于$\frac{N}{\ln N}$”;简单来讲,就是说$\frac{N}{\ln N}$是$\pi(N)$的一个近似估计。也许有的读者会问为什么不用≈而用~呢?事实上,~包含的意思还有:
$$\lim_{N-\infty} \frac{\pi(N) \ln N}{N}=1$$

点击阅读全文...

18 Mar

指数函数及其展开式孰大孰小?

在x>0时,指数函数$f(x)=e^x$与幂函数$h_n (x)=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...+\frac{x^n}{n!}$孰大孰小?

对于已经学习了微积分的朋友来说,这道题目是很简单的,甚至$f(x) > h_n (x)$可以说是“显然成立的”(因为$e^x$展开式接下来的无穷项都是正数)。但是,这道题目出在了2012年的广州一模理科数学中,就显得不那么简单了,得用初等的方法来证明它。而笔者最近养成了一个习惯,拿到一张数学试卷,不是先做选择题,而是先做最后一题。所以在参加广州一模时,先花了半个小时把最后一题(即本题)解决了。下面是我想到的三种解法。

一、数学归纳法

点击阅读全文...

13 Jun

更换了一个相册程序

在此之前,BoJone的相册用的是phpyou相册程序,本来是喜欢它的简洁方便的,所以它这么多年不更新也没有介意。后来才发现,这个程序糟糕透了(不知道是不是我下载的版本不对)。昨天查了一下数据库,我发现我的数据库有16M大小,而一个phpyou就占用了12M,更离谱的是,它里边似乎镶嵌着许多不良敏感信息,所以,BoJone坚决抛弃它了。

现在使用的是kh_mod中文网址),而它也是基于之前的MG2架设的,也是属于简洁相册的类型。新相册基本保留了原来的目录结构和图片。当然,之前的相册已经很久没有更新了,以后会多与大家分享一些瞬间的^_^

新相册

新相册

30 Jun

今天傍晚出现了彩虹

今天傍晚看到了彩虹!当然这算不上什么奇观,但还是一道美丽的风景。

人说“不经历风雨,怎么见彩虹”,我发现彩虹不一定是在雨后的,今天我看彩虹的时候,就是暴风雨前夕。彩虹是在18点10分左右出现的,持续了5分钟左右吧,看着看着,雨越下越大,我被迫停止欣赏了,不过彩虹也随之消失了。

用一个老相机简单记录了一下这道亮丽的风景!这是我第一次拍摄彩虹^_^

不知道是相机问题还是真有其事,在照片上发现有两条彩虹。难道这次的彩虹是”双彩虹“?那可真是奇观了!


很老的家用数码相机,没有广角,不能拍摄全景,这是用photoshop把两张图片拼凑起来的,效果不好

点击阅读全文...