用复数化简二次曲线的尝试
By 苏剑林 | 2013-01-02 | 26354位读者 | 引用角的疑惑——为什么使用弧度?
By 苏剑林 | 2013-01-07 | 27429位读者 | 引用也许当我们从小学数学进入中学数学的过程中,让我们最郁闷的事情就是课本上把用的好好的角度制改为弧度制了,那个好好的360°的周角无端端变成了一个无理数$2\pi$,为此还多了一堆转换公式,那时这可把我折腾了好一阵子。为什么一个完美的360°不用,反而转向一个无理数$2\pi$?这里边涉及到了相当多的原因,在这些原因中,重新体现了数学体系的一致与简约。当然,文章里的观点只是我自己的看法,仅供大家参考。
弧度制:简约的要求
如果读者已经学过了极限理论,那么我就可以直接说,引入弧度制,是为了在这样的一种角的度量体制下,满足:
$$\lim_{x\to 0} \frac{\sin x}{x}=1$$
轻微的扰动——摄动法简介(1)
By 苏剑林 | 2013-01-16 | 46725位读者 | 引用为了计算实际问题,我们总会采用各种各样的理想模型。一般而言,一个模型越接近实际现象,它往往会越复杂。而忽略掉多数微小的干扰,只保留一些主要的项,这通常可以得到一个相当简单、能够精确解出的模型。以这样的一个可以精确解出的近似模型为基础,逐渐地把微小项的影响添加进去,使得我们的答案越来越准确,这就是摄动法的思想,也称作“微扰理论”。这种方法源于求解天体力学的N体问题,而现在已经发展成为一门相当系统的学科,并应用到了相对多的领域,如量子力学、电子理论等。
其实不难发现,实际问题中存在不少这样的例子,即当我们要计算某个现象时,先考虑最突出的,然后再考虑细节。比如说,要计算地球的轨道,先把它看成一个与太阳组成的纯粹的二体系统,然后把各种微小效应加进去,比如月球的影响、各大行星的影响甚至由于地球的不规则形状所产生的影响等。当然,不仅仅是这一类复杂的“大问题”,我们平常可能会遇到的一些“小问题”有可能也让摄动法派上用场。本文试图将摄动法介绍给各位读者。
摄动法的主要步骤是先忽略微小影响(令小参数为0),求出精确解;然后把所要求的解表达为关于小参数的幂级数。这个方法可以用于解答代数方程、微分方程等等各种领域。下面先以一个简单的代数方程来说明:
一、求解方程:$\varepsilon x^3+x^2=p^2$
新科学家:割裂时间空间,统一相对论量子论
By 苏剑林 | 2013-01-16 | 27418位读者 | 引用这篇文章源于《新科学家》2010年8月7日刊,它介绍了物理学家Horava为了统一相对论和量子力学,把广义相对论的时空联系割裂的尝试。在相对论中,时间和空间结合成了不可分割的整体。而现在,有物理学家却要把时间与空间分开,来建立让广义相对论和量子力学相调和的统一理论。我对这个理论挺感兴趣的,当然,我还没有能力弄懂它。只是它符合了我们大多数人的一个直觉,就是时间总有跟空间不同的地方,它们之间不应该完全等同起来。不过,事实如何,只有未来的实验能够严重了。
本文并没有官方的中文译文,现载的译文来自“译言网”。译文有一些翻译不大正当的地方,由于时间限制,无法一一修正,但是我觉得对于理解本文内容已经足够了。如果有疑问,不妨参考后边的英文原文,并在此提出与大家讨论。
对爱因斯坦的反思:空间-时间耦合的物理数学的终结
纠结于融合引力和量子力学的物理学家们正向着一个受到铅笔芯启发的理论欢呼雀跃,这个理论可以很简单地让他们取得成功。
它曾是一个改变了我们思考空间和时间的方式的报告。那一年是1908年,德国数学家赫尔曼-闵可夫斯基正尝试着理解爱因斯坦火热的新思想——即我们现在所熟知的狭义相对论,它描述当物质运动很快时它们是如何收缩以及时间是如何扭曲的。“从此独立的空间和时间将注定淡出到纯粹的虚幻中,”闵可夫斯基说道:“而只有两者的统一才能保证一个独立的现实世界。”
纠缠的时空(一):洛仑兹变换的矩阵
By 苏剑林 | 2013-02-01 | 38198位读者 | 引用我现在是越来越佩服爱因斯坦了,他的相对论是他天才的思想的充分体现。只有当相对论提出之后,宏观物理的大多数现象和规律才得到了统一的描述。狭义相对论中爱因斯坦对我们速度叠加常识的否定已经显示了他莫大的勇气,而一项头脑风暴性的工作——广义相对论则将他惊人的创造力体现得完美无瑕。我是被量子力学的数学吸引的,于相对论则是被相对论美妙的逻辑体系吸引。当然,其中也有相当美妙的数学。
狭义相对论中的核心内容之一就是被称为洛仑兹变换的东西,这在相对论发表之前已经由洛仑兹推导出来了,只不过他不承认他的物理意义,也就没有就此进行一次物理革命,革命的任务则由爱因斯坦完成。很久前我就已经看过洛仑兹变换的推导,那是直接设一种线性关系来求解的。但是我总感觉那样的推导不够清晰(也许是我的理解方式有问题吧),而且没有说明狭义相对论的两条原理如何体现出现。所以在研究过矩阵之后,我就尝试用矩阵来推导洛仑兹变换,发现效果挺好的,而且我觉得能够体现出相对论中的对称性。
两条原理
1、狭义相对性原理:在所有惯性系中,物理定律有相同的表达形式。这是力学相对性原理的推广,它适用于一切物理定律,其本质是所有惯性系平权。
2、光速不变原理:所有惯性系中,真空中的光速都等于c=299 792 458 m/s,与光源运动无关。迈克耳孙-莫雷实验是其有力证明。
网友:椭圆定长弦中点轨迹的一种解法
By 苏剑林 | 2013-02-02 | 33740位读者 | 引用大概在半年前,我曾用“化圆法”解决了椭圆内定长弦中点轨迹问题,求出了轨迹方程。前几天,我收到了网名为“理想”的网友的Email,他提出了自己对这个问题的解法,并得到了形式不同的轨迹方程,因此对两者的等价性表示疑惑。经过检验,我跟他的轨迹方程基本上是等价的,不过,他求出的轨迹方程总包括了原点,这是一点不足之处。但是看起来,他的轨迹方程却感觉好看一些。这的确很让人意外,因为从他的化简过程来看,有种“化简为繁”的味道,却得出了相当简洁的答案,着实有趣。
经过网友的同意,将他的过程贴在这里与大家分享!后面附有pdf文档,欢迎下载阅读。希望在科学空间可以看到更多的读者留下的痕迹。
椭圆定长弦中点轨迹的一种解法
作者:理想
本文介绍了一种计算椭圆定长弦中点轨迹的方法。设椭圆长、短轴分别为$2a$、$2b$,弦长为$2r$,随着弦的两端在椭圆上滑动,弦的中点形成的轨迹为:
$$(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1)(\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{r^2}{a^2b^2}) + \frac{r^2}{a^2b^2} = 0$$
它不是一个椭圆,而是一个高次曲线。
轻微的扰动——摄动法简介(2)
By 苏剑林 | 2013-02-06 | 38378位读者 | 引用为了让大家更加熟悉摄动法的基本步骤,本文再讲一个用摄动法解代数方程的例子。这是从实际研究中出来的:
$$\begin{eqnarray*} x=\frac{k(1+k^2+k^4+l^2)}{2(1+k^2)^2} \\ k=\frac{dy}{dx}\end{eqnarray*} $$
这是一道微分方程。要求解这道方程,最好的方法当然是先从第一式解出$k=k(x)$的形式然后再积分。但是由于五次方程没有一般的显式解,所以迫使我们要考虑近似解。当然,一般来说熟悉mathematica的人都会直接数值计算了。我这里只考虑摄动法。
我们将原方程变为下面的形式:
$$x=\frac{k}{2}[1+\frac{l^2}{(1+k^2)^2}]$$
[问题解答]有多少位数字?
By 苏剑林 | 2013-02-21 | 15853位读者 | 引用解决完上一题《有多少个5?》后,子瑞表示看到一道类似的题目,当然,这道题比上一道难一些:
一个数,各个数字加起来等于900,乘以2后各个数字加起来还是等于900,已知这个数字只有3、4、5、6组成,请问满足条件的最大数与最小数的积有多少位数?
要解答这个问题,我们只需要知道最大数和最小数分别有多少位即可。因为最大数必然是6...3的形式,而最小数只能是3...6的形式,它们的位数之和就是所求的位数。
怎样比较两个数的大小呢?显然,在不同位数的数时,位数多的数要大,同样位数才从高到低逐位比较。因此,我们应当考虑位数的最大与最小。
最近评论