25 Jul

“韦森特”来袭

昨天清晨,台风“韦森特”正式来袭我们新兴,话说凌晨三点我已经被风声吵醒了。大概7点钟起床,刚好是台风最抢镜的时候,猛烈地刮呀刮,声音有点像卡车启动的声音......

昨天一整天断电,上午还断了固定电话(农村地区是这样的啦,断电是整体的,台风刮倒了电线杆;断电话是我自己家的问题),中午的时候,固话却自动连上了,郁闷中。下午风雨都基本停下来了,妈妈和我们就出去收拾“残局”,被风刮倒的东西可真不少,尤其是我家门口的两个小棚,惨不忍睹;还有门前的一些盆栽、菜、树等,都倒下了不少。三个人爬上爬下,慢慢维修、收拾。

晚上还是没来电,也好,很久没有尝试过烛光晚餐了。九点多钟的时候,电来了,但是又是一番故障——其他人家中的电都很正常,就我这里灯泡很暗、日光灯启动不了,明显是电压不够的问题。没办法,只好硬着头皮抢修了,排除了很多原因,最后甚至从隔壁家搭电过来,发现我们家的灯还是那么暗(电压不足的问题没有解决)——这说明只有一个可能了,外部电路都没有故障,是我家的内部电路出了问题,猜想某个地方串联了一个用电器分去了电压。但是电线都镶进墙里了,这么黑根本维修不了,没办法,先睡觉了。

点击阅读全文...

17 Aug

电偶极子浅探(1)

设想两个带有等量异号电荷的点电荷,它们之间的距离足够小,这样的一个模型被称为电偶极子(electric dipole)。我们研究电偶极子,主要是研究它在力学方面的性质。很多东西都可以用电偶极子来近似描述,比如一个小磁体周围的磁场,还有地球本身也可以近似看做一个偶极子来描述它的磁力情况,以及一些双原子分子的模型也被可以看做一个电偶极子模型,等等。在电偶极子模型中,两电荷的距离足够小,以至于我们忽略了一些关于距离的高次方项,只保留了线性部分,但对于物理探索来说,它已经足够精确,更重要的是,它足够简单,以至于我们可以容易把它清晰地描述出来。

电偶极子.PNG

我们先来研究电偶极子产生的电势。设它们各自的电荷量为q和-q,两者距离为ε,根据库仑定律,一个点电荷产生的电势,正比于该电荷的电荷量,同时反比于到该点电荷的距离。那么,一个电偶极子产生的电势为
$U=C(\frac{q}{r}+\frac{-q}{|\vec{r}-\vec{\varepsilon}|})$————(1)

点击阅读全文...

21 Sep

军训结束了,基本在华师安家了

上网的那些事儿

从申请帐号到接通校园网络,昨天晚上我总共花了将近3个小时才实现了在校内上网......

其实这本来不是一件很复杂的事情,但对于我的笔记本就是挺麻烦的。首先是申请,向隔壁师兄咨询了网管所在后,几分钟就申请到了账号,然后回到宿舍配置电脑。按照说明,是需要安装一个锐捷客户端的,通过手机把笔记本连上网络后,花了差不多20M流量下载了这个客户端,然后发现它竟然不能在Windows 8 64bit上运行。这就头疼了,我的笔记本只有Windows8和ubuntu呀,总不能为了上网换回Windows 7吧?就这样在两个系统中来来回回弄了两个小时,期间尝试过用mentohust来替换它,但发现在Windows 8上还是很头疼地不行。最后只能通过兼容模式来解决:

右击“锐捷客户端”的安装程序——属性——兼容性——选择以Windows 7兼容模式
右击“锐捷客户端”的安装程序——以管理员身份运行——安装程序——重新启动
然后就可以启动锐捷客户端了。我们用的是4.31版本。

点击阅读全文...

18 Aug

电偶极子浅探(2)

在上一篇文章中,我们已经得到了电偶极子的等势面和电场线方程,这应该可以让我们对电偶极子的力场情况有个大致的了解了。当然,我们还是希望能够求出在这样的一个受力情况下,一个带电粒子是如何运动的。简单起见,在下面的探讨中,我们假定带电粒子的质量和电荷量均为1,至于电荷的正负,可以通过改变在$U=-\frac{k \cos\theta}{r^2}$中的k值的正负来控制。我们使用的工具依旧是理论力学中的欧拉-拉格朗日方程。

也许不少读者始终对公式感到头疼,更不用说是博大精深的理论力学了。但是请相信我,如果你花一点点心思去弄懂用变分法研究力学(或其他物理系统,但我目前只会用于力学)的基本思路和步骤,那么对你的物理研究是大有裨益的。因为在我眼中,学习了一丁点的理论力学知识后,我看到的只有物理的简洁与和谐。有兴趣的朋友可以看看我的那几篇《自然极值》等相关文章。

首先写出动能的表达式:$T=\frac{1}{2} (\dot{r}^2+r^2 \dot{\theta}^2)$

还有势能:$U=-\frac{k \cos\theta}{r^2}$

点击阅读全文...

22 Sep

军训中的数学——握手奇数次的人数

军训是比较辛苦,可是总有一些无聊的时刻。比如我们每次集合后的第一件事基本上都是站军姿,少则五分钟,长则二三十分钟,在这段时间里,头脑总得找点东西想才行,不然一动不动的,非常难熬。我就是在军训那些无聊的时刻里通过想数学问题来度过的。比如一有空余时间,我的头脑就浮现着级数$\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{p}$、哥德巴赫猜想、稳定性问题啦等等,并不是说要做出什么大发现,只是为了渡过无聊时间,也是对自己的思维能力和想象能力的锻炼吧。

之前提到过,昨天我们的“格斗方阵”去大学城表演了。在去大学城的过程中,我的一位“战友”问了我一个这样的问题:

在一个相互握手的人群中,握手奇数次的人总是有偶数个。每两个人可以握多于一次的手

他还说这是爱因斯坦提问的。这可把我的兴致给调动起来了。(后来我在网上搜索,却发现不了这个问题跟爱因斯坦的任何联系...)下边是我的颇有戏剧性的思考过程。

人群的握手问题

人群的握手问题

点击阅读全文...

26 Sep

均值不等式的两个巧妙证明

记得几年前,BoJone提供过一个证明均值不等式(代数—几何平均不等式)的方法,但是其中的证明有点长,有点让人眼花缭乱的感觉(虽然里边的思想还是挺简单的)。昨天在上《数学分析》课程的时候,老师讲到了这个不等式,也讲了他的证明,用的是数学归纳法,感觉还是没有那种简洁美和巧妙美。但这让我回想起了之前我研究过的两种巧妙证明方法,可是在昨天划了一整天,都没有把这两种方法回忆起来。直到今天才回想起来,所以就放在这里与大家分享,同时也作备忘之用。

对于若干个非负数$x_i$,我们有
$$\frac{x_1+x_2+...+x_n}{n} \geq \sqrt[n]{x_1 x_2 ... x_n}$$

记为$A_n \geq G_n$

证明1:数学归纳法
这个方法不算简单,但是非常巧妙,它从n递推到n+1的过程让人拍案叫绝。用数学归纳法证明詹森不等式也是同样的递推思路,而均值不等式不过是詹森不等式的一个特例而已。

假设$A_n \geq G_n$成立,要证$A_{n+1} \geq G_{n+1}$。我们有

$$\begin{aligned}&2n A_{n+1}=(n+1)A_{n+1}+(n-1)A_{n+1} \\
=&[x_1 + x_2 +...+x_n]+[x_{n+1}+(n-1)A_{n+1}] \\
\geq &nG_n+n(x_{n+1}\cdot A_{n+1}^{n-1})^{\frac{1}{n}} \\
\geq &2n(G_{n+1}^{n+1}\cdot A_{n+1}^{n-1})^{\frac{1}{2n}}\end{aligned}$$

点击阅读全文...

16 Oct

相对论和量子力学的初探

=====大学学习=====

上大学已经一个多月了,除去军训的两周和国庆放假的一周,到现在已经是第三周上课了。我是数学专业的,由于是那个勷勤创新班,它希望我们都向研究型数学的方向发展,所以给我们“更多的自由研究时间”,所以课程比一般的班还少一点。由于高中已经对高等数学有个大概的了解,所以一开始让很多同学都喊苦的数学分析、解析几何于我而言都还是比较容易接受的。但从另外一个角度上来讲,我感觉我学得快的原因,倒不全是以前的积累,而是因为个人的学习方式。我不喜欢跟着老师的步伐走,我喜欢而且需要深入地思考和理解一个问题,希冀达到一理通百理明的效果,而不是做完一题紧接着下一题。因为我认为这种竞赛式的学习不能给我们带来实质性的进步,而且有可能抹杀了我们的创造力。

1979年爱因斯坦邮票

1979年爱因斯坦邮票

没有应用的数学是很枯燥乏味的,数学不能脱离物理、化学等领域。当然“应用”这个词有很广泛的意思,它不一定在实际生活中起到了立竿见影的作用,而是所有在非数学领域中体现了数学之美的例子都可以叫做数学应用,或者有趣的数学。所以,在经历了一两周纯粹地研究数学之后,我感觉我不能再这样下去了,与其零散地涉猎各个方面的知识,倒不如现在开始就系统地学习一些学科以外的科学知识。于是,我决定重拾高中还没有完成的事情——学习相对论和量子力学——所谓现代物理的两大支柱。

点击阅读全文...

18 Oct

证明光速不变的一个理想实验??

在狭义相对论发表之前和之后,都有不少实验从不同角度论证了它的正确性。这些实验大多数是实际测量得出结果的,当然也存在着一些“理想实验”,这些实验只需要一定的逻辑推理,而实际上是无法完成的。下面就是我很久之前在某本书(很抱歉,我真的忘记书名了)看到的一个用来推翻光速可叠加的伽利略变换的理想实验。它只用寥寥几句,就好像已经证明了“c+c=c”(c是真空中的光速)的事实。可是“c+c=c”在狭义相对论上是作为原理出现的,是不可能通过逻辑推理来证明的。事实究竟如何?我们先来看这个实验。

光速不变的理想实验

光速不变的理想实验

任意选定一个坐标原点。设想原点的正北方$c\cdot t_0$处有一架以光速$c$朝南运行的飞机1;原点的正西方$c\cdot t_0$处有一架以光速$c$朝东运行的飞机2。假设就这样匀速运动着,显然,$t_0$时间后,将会发生惨剧(飞机相撞)。

点击阅读全文...