记2011北京大学天文夏令营
By 苏剑林 | 2011-07-18 | 28288位读者 | 引用指数函数及其展开式孰大孰小?
By 苏剑林 | 2012-03-18 | 29015位读者 | 引用在x>0时,指数函数$f(x)=e^x$与幂函数$h_n (x)=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...+\frac{x^n}{n!}$孰大孰小?
对于已经学习了微积分的朋友来说,这道题目是很简单的,甚至$f(x) > h_n (x)$可以说是“显然成立的”(因为$e^x$展开式接下来的无穷项都是正数)。但是,这道题目出在了2012年的广州一模理科数学中,就显得不那么简单了,得用初等的方法来证明它。而笔者最近养成了一个习惯,拿到一张数学试卷,不是先做选择题,而是先做最后一题。所以在参加广州一模时,先花了半个小时把最后一题(即本题)解决了。下面是我想到的三种解法。
一、数学归纳法
高考早已成为了历史,报考、录取等也已经成为了过去,由于高考发挥不大好,所以最终我进了华南师范大学的数学勷勤创新班,在石牌校区(华师本部)的数学科学院。
有人曾问我考得这样的成绩遗憾吗?我说的确会有些遗憾,毕竟当初很有大志地冲着更加名牌的大学;不过要是问我后不后悔这样过了高三,我会坚决地说绝不后悔,而且我会非常高兴我是这样过了。(备考、研究、玩闹......)不管怎样,我会好好把握在大学的日子,专心研究,细细品味。我不相信一个大学就可以决定我的人生,但我肯定我的大学将会是我人生中重要的一部分。
要问我未来的计划,我只能说没有什么计划。是呀,未来这么远,这么“混沌”,怎么可能预测的了呢?不过还是可以“定性”地估计一下大概方向的,以后就想做研究型的工作,虽然学习的是数学,但还是努力将其结合物理一起来学吧。所以以后可能从事物理或数学相关工作,当然,要是这些都实现不了的话,我还可以去当一个老师,毕竟,教育也是我挺有兴趣的领域(尤其是看了宝莱坞的《三个傻瓜》之后)。如果自己不是人才,就希望能够培养一些人才出来^_^。
小时候总是听到“光阴似箭”,却总是觉得时间过得飞快,尤其是放假的时间迟迟不来。而现在,随着年龄的增长,我却发现,想要留住时间,如同抽刀断水一般,无济于事。尤其是美好的时刻,稍瞬即逝。大学,上学、军训的情况依然清晰在目,犹如发生在昨天,而现在已经是寒假了。有时我会怀疑是不是我的记忆力增强了,却发现没有这回事。原来,真相只有一个:光阴似箭!
我不喜欢仔细地规划自己的人生,因为未来太多未知了,也许你今天发现这方面很有趣,明天又会发现另一方面很有趣,所以我只知道我尽力做好当前喜欢做的事情就行。因此,在上大学之前,我也没有对大学想太多。想象中的大学是一个静静自修的教室加上一个丰富的图书馆而已。来到华师,确实有点意外,也有点遗憾,但是,仅此而已。虽然以前努力过要奔向更优秀的大学,但是这已经成为我宝贵的经验。以后在和朋友聊天时,我又多了一个话题。这不得不说是一件很美妙的事情!
[问题解答]运煤车的最大路程(更正)
By 苏剑林 | 2014-05-04 | 39987位读者 | 引用强大的整数数列网站OEIS
By 苏剑林 | 2014-07-17 | 37781位读者 | 引用OEIS?:http://oeis.org/
近段时间在研究解析数论,进一步感觉数论真是个奇妙的东西,通过它,似乎数学的各个方面——离散的和连续的,实数的和复数的,甚至物理的——都联系了起来。由此也不难体会到当初高斯(Gauss)会说“数学是科学的皇后,数论是数学的皇后。”了。今天,由于在研究素数的个数的上下界问题时,需要思考组合数
$$C_{n}^{2n}=\binom{2n}{n}=\frac{(2n)!}{n!\ n!}$$
最多能被2的多少次方整除。直觉告诉我,次数应该是随着$n$的增大而增大的,但事实却不是,比如$C_{15}^{30}$能够被16整除,但是$C_{20}^{40}$却最多只能被4整除,有种毫无规律的感觉,于是到群里问问各大神。其中,wayne提出
这个可以写个小程序算出一些数据,再在oeis上搜搜
寻求一个光滑的最大值函数
By 苏剑林 | 2015-05-02 | 127126位读者 | 引用在最优化问题中,求一个函数的最大值或最小值,最直接的方法是求导,然后比较各阶极值的大小。然而,我们所要优化的函数往往不一定可导,比如函数中含有最大值函数$\max(x,y)$的。这时候就得求助于其他思路了。有一个很巧妙的思路是,将这些不可导函数用一个可导的函数来近似它,从而我们用求极值的方法来求出它近似的最优值。本文的任务,就是探究一个简单而有用的函数,它能够作为最大值函数的近似,并且具有多阶导数。下面是笔者给出的一个推导过程。
在数学分析中,笔者已经学习过一个关于最大值函数的公式,即当$x \geq 0, y \geq 0$时,我们有
$$\max(x,y)=\frac{1}{2}\left(|x+y|+|x-y|\right)\tag{1}$$
那么,为了寻求一个最大值的函数,我们首先可以考虑寻找一个能够近似表示绝对值$|x|$的函数,这样我们就把问题从二维降低到一维了。那么,哪个函数可以使用呢?
当大数据进入厨房:让大数据教你做菜!
By 苏剑林 | 2016-01-18 | 42106位读者 | 引用说在前面
在空间侧边栏的笔者的自我介绍中,有一行是“厨房爱好者”,虽然笔者不怎么会做菜,但确实,厨房是我的一个爱好。当然,笔者的爱好很多,数学、物理、天文、计算机等,都喜欢,都想学,弄到多而不精。在之前的文章中也已经提到过,数据挖掘也是我的一个爱好,而当数据挖掘跟厨房这两个爱好相遇了,会有什么有趣的结果吗?
笔者正是做了这样一个事情:从美食中国的家常菜目录下面,写了个简单的爬虫,抓取了一批菜谱数据下来,进行简单的数据分析。(在此对美食中国表示衷心感谢。选择美食中国的原因是它的数据比较规范。)数据分析在我目前公司的高性能服务器做,分析起来特别舒服~~
这里共收集了18209个菜谱,共包含了9700种食材(包括主料、辅料、调料,部分可能由于命名不规范等原因会重复)。当然,这个数据量相对于很多领域的大数据标准来说,实在不值一提。但是在大数据极少涉及的厨房,应该算是比较多的了。
最近评论