高斯说过“数学是科学的皇后,而算术则是数学的女王。”这里的“算术”,其实就是我们现在所说的数论。从很小的时候开始,我便对数论情有独钟。虽然后来接触了很多更为有趣的数学分支,但是对数学的热情依然不减。我想,这大概是因为小时候的情结吧。小学时候,小小年纪的我,刚刚学完素数、合数、约数、整除等等概念,对数字尤其有兴趣。我想,在那时候我唯一能够读懂的数学难题只有数论这一领域吧。比如费马大定理,$x^n+y^n=z^n$,对于n大于2没有正整数解,很容易就知道它在讲什么;再比如,哥德巴赫猜想,每个大于4的偶数都可以分拆成两个奇素数之和,也很简单就弄懂它讲的是什么。所以,小小的我看懂了这些问题后就饶有兴致地摆弄数字啦,也许正因为如此,才让我对数字乃至对数学都有深厚的爱。
哥德巴赫猜想,无疑是数论中的一个璀璨明珠,可是目前来讲,它还是可望不可即的。一个看似如此简单的猜想,却困惑了数学家几百年,至今无人能解。尽管如此,我还是愿意细细地研究它,慢慢地品味它,在“论证”、或者说验算它的时候,欣赏到数学那神秘的美妙。本文主要就是研究给定偶数的“哥德巴赫分拆数”,即通过实际验算得出每个偶数分拆为两个素数之和的不同分拆方式的数目,比如6=3+3,只有一种分拆方式;8=3+5=5+3;有两种分拆方式;10=3+7=5+5=7+3,有三种分拆方式;等等。偶数2n的分拆数记为$G_2 (2n)$。
(这里定义的“分拆数”跟网上以及一般文献中的定义不同,这里把3+5和5+3看成是两种分拆方式,而网上一般的定义是只看成一种。我这里的定义的好处在于分拆方式的数目实际表示了分拆中涉及到的所有素数的个数。)
哥德巴赫猜想很难,这话没错,但是事实上哥德巴赫猜想是一个非常弱的命题。它说“每个大于4的偶数至少可以分拆成两个奇素数之和”,用上面的术语来说,就是每个偶数的“哥德巴赫分拆数”大于或等于1。可是经过实际验算发现,偶数越大,它的哥德巴赫分拆数越大,两者整体上是呈正相关关系的,比如$G_2 (100)=12,G_2 (1000)=56,G_2 (10000)=254$......所以,从强弱程度上来讲,这和“少于n的素数至少有一个”是差不多的(当然,难度有天壤之别)。
实数集到无理数集的双射
By 苏剑林 | 2014-09-22 | 35856位读者 | 引用集合论的结果告诉我们,全体实数的集合$\mathbb{R}$跟全体无理数的集合$\mathbb{R} \backslash \mathbb{Q}$是等势的,那么,如何构造出它们俩之间的一个双射出来呢?这是一个颇考读者想象力的问题。当然,如果把答案给出来,又似乎显得没有那么神秘。下面给出笔者构造的一个例子,读者可以从中看到这种映射是怎么构造的。
为了构造这样的双射,一个很自然的想法是,让全体有理数和部分无理数在它们自身内相互映射,剩下的无理数则恒等映射。构造这样的一个双射首先得找出一个函数,它的值只会是无理数。要找到这样的函数并不难,比如我们知道:
1、方程$x^4 + 1 = y^2$没有除$x=0,y=\pm 1$外的有理点,否则将与费马大定理$n=4$时的结果矛盾。
2、无理数的平方根依然是无理数。
根据这些信息,足以构造一个正实数$\mathbb{R}^+$到正无理数$\mathbb{R}^+ \backslash \mathbb{Q}^+$的双射,然后稍微修改一下,就可以得到$\mathbb{R}$到$\mathbb{R} \backslash \mathbb{Q}$的双射。
《自然极值》系列——5.最速降线的故事
By 苏剑林 | 2010-12-09 | 68892位读者 | 引用如果说前面关于这个系列的内容还不能使得读者您感到痛快,那么接下来要讲述的最速降线和悬链线问题也许能够满足你的需要。不过在进入对最速降线问题的理论探讨之前,我们先来讲述一个发生在17世纪的激动人心的数学竞赛的故事。我相信,每一个热爱数学和物理的朋友,都将会为其所振奋,为其所感动。里边渗透的,不仅仅是一次学术的竞争,更是一代又一代的人对真理的追求与探路的不懈精神。
(以下内容来源于网络,科学空间整理)
意大利科学家伽利略在1630年提出一个分析学的基本问题── “一个质点在重力作用下,从一个给定点A到不在它垂直下方的另一点B,如果不计摩擦力,问沿着什么曲线滑下所需时间最短。”这算是这个著名问题的起源了(为什么别人没有想起这个问题呢?所以说大科学家的素质就是思考、创新,要有思想,人没有思想,就和行尸走肉没有什么区别)。可惜的是伽利略说这曲线是圆,但这却是一个错误的答案。
【理解黎曼几何】2. 从勾股定理到黎曼度量
By 苏剑林 | 2016-10-14 | 74143位读者 | 引用黎曼度量
几何,英文名是Geometry,原意是大地测量。既然是测量,就必须有参考物,还有得知道如何计算距离。
有了参照物,我们就可以建立坐标系,把每个点的坐标都写下来,至于计算距离,我们有伟大的勾股定理:
$$ds^2 = dx^2 + dy^2 \tag{1} $$
但这里我们忽略了两个问题。
第一个问题是,我们不一定使用直角坐标系,如果使用极坐标,那么应该是
$$ds^2 = dr^2 + r^2 d\theta^2 \tag{2} $$
因此可以联想,最一般的形式应该是
$$ds^2 = E(x^1, x^2)(dx^1)^2 + 2F(x^1, x^2)dx^1 dx^2 + G(x^1, x^2)(dx^2)^2 \tag{3} $$
这里的$x^1,x^2$是广义坐标,使用上标而不是下标来标记序号,是为了跟传统的教材记号一致。那这公式是什么意思呢?其实很简单,正如我们没理由要求全世界都使用人民币一样,我们没必要要求世界各地都使用同一个坐标系,而更合理的做法是,每一处地方都使用自己的坐标系(局部坐标系),然后给出当地计算距离的方法。因此,上述公式正是说,在位置$(x^1, x^2)$处计算向量$(dx^1, dx^2)$的长度的公式(当地的勾股定理)是$ds^2 = E(x^1, x^2)(dx^1)^2 + 2F(x_1, x_2)dx^1 dx^2 + G(x^1, x^2)(dx^2)^2$。
2009年5月22日,对于很多人来说并不是什么特别的日志,不过数学界这边又传来了一个“喜讯”:我们已经找到了第47个梅森素数,即$2^{42643801}-1$是一个素数!新的素数已于6月12日通过法国的Tony Reix的验证,这是目前的第二大素数,有12,837,064位数字!这是通过参加一个名为“因特网梅森素数大搜索”(GIMPS)的国际合作项目而发现的。让我们来共同回顾这一素数之旅!
素数/梅森素数
素数,现在课本上都已经成为“质数”了,不过目前很多数学家、爱好者都还是将其称为素数(也许这个名字好听)。这是指一些不可分解成两个比它本身小的两个整数相乘的形式的数,如2、3、5、7等。除了2外,所有的素数都是奇数。
[转载] 做数学一定要是天才吗?
By 苏剑林 | 2014-11-17 | 28235位读者 | 引用(译自 陶哲轩 博客, 译者 liuxiaochuang)
(英文原文:Does one have to be a genius to do maths?)
这个问题的回答是一个大写的:不!为了达到对数学有一个良好的,有意义的贡献的目的,人们必须要刻苦努力;学好自己的领域,掌握一些其他领域的知识和工具;多问问题;多与其他数学工作者交流;要对数学有个宏观的把握。当然,一定水平的才智,耐心的要求,以及心智上的成熟性是必须的。但是,数学工作者绝不需要什么神奇的“天才”的基因,什么天生的洞察能力;不需要什么超自然的能力使自己总有灵感去出人意料的解决难题。
大众对数学家的形象有一个错误的认识:这些人似乎都使孤单离群的(甚至有一点疯癫)天才。他们不去关注其他同行的工作,不按常规的方式思考。他们总是能够获得无法解释的灵感(或者经过痛苦的挣扎之后突然获得),然后在所有的专家都一筹莫展的时候,在某个重大的问题上取得了突破的进展。这样浪漫的形象真够吸引人的,可是至少在现代数学学科中,这样的人或事是基本没有的。在数学中,我们的确有很多惊人的结论,深刻的定理,但是那都是经过几年,几十年,甚至几个世纪的积累,在很多优秀的或者伟大的数学家的努力之下一点一点得到的。每次从一个层次到另一个层次的理解加深的确都很不平凡,有些甚至是非常的出人意料。但尽管如此,这些成就也无不例外的建立在前人工作的基础之上,并不是全新的。(例如, Wiles 解决费马最后定理的工作,或者Perelman 解决庞加莱猜想的工作。)
有限素域上的乘法群是循环群
By 苏剑林 | 2015-01-20 | 80076位读者 | 引用对于任意的素数$p$,集合$\mathbb{Z}_p=\{0,1,2,\dots,p-1\}$在模$p$的加法和乘法之下,构成一个域,这是学过抽象代数或者初等数论的读者都会知道的一个事实。其中,根据域的定义,$\mathbb{Z}_p$首先要在模$p$的加法下成为一个交换群,而且由于$\mathbb{Z}_p$的特殊性,它还是一个循环群,这也是比较平凡的事实。但是,考虑乘法呢?
首先,$0$是没有逆元的,我们考虑乘法,是在$\mathbb{Z}^\cdot _p=\mathbb{Z}_p \verb|\| \{0\}=\{1,2,\dots,p-1\}$上考虑的。如果我说,$\mathbb{Z}^\cdot _p$在模$p$之下的乘法也作成一个循环群,这结论就不是很平凡的了!然而这确实是事实,对于所有的素数$p$均成立。而有了这事实,数论中的一些结论就会相当显然了,比如当$d\mid (p-1)$时,$\mathbb{Z}_p$中的$d$次剩余就只有$\frac{p-1}{d}$个了,这是循环群的基本结论。
在《数学天书中的证明》一书中,有该结论的一个证明,但这个证明是存在性的,而我在另外一本书上也看到过类似的存在性证明,也就是说,似乎流行的证明都是存在性的,它告诉我们$\mathbb{Z}^\cdot _p$是一个循环群,但是没告诉我们怎么找到它的生成元。而事实上,高斯在他的《算术探索》中就给出了一个构造性的证明。(在数论中,本文的结论是“原根”那一章的基本知识。)下面笔者正是要重复高斯的证明,供读者参考。
最近评论