19 Apr

柯西命题:盯着它到显然成立为止!

数学分析中数列极限部分,有一个很基本的“柯西命题”:

如果$\lim_{n\to\infty} x_n=a$,则
$$\lim_{n\to\infty}\frac{x_1+x_2+\dots+x_n}{n}=a$$

本文所要谈的便是这个命题,当然还包括类似的一些题目。

柯西命题的证明

柯西命题的证明并不难,只需要根据极限收敛的定义,由于$\lim_{n\to\infty} x_n=a$,所以任意给定$\varepsilon > 0$,存在足够大的$N$,使得对于任意的$n > N$,都有
$$\left|x_n - a\right| < \varepsilon/2\quad(\forall n > N)$$

点击阅读全文...

10 Jun

【翻译】巨型望远镜:要继续,就得有牺牲!

2007年末公布的30米望远镜效果图

2007年末公布的30米望远镜效果图

文章来自:新科学家,这是一篇关于30米望远镜(Thirty Meter Telescope,TMT)的新闻,起因是望远镜的制造遭到当地人的不满,当然背后的原因是很深远的,难以说清楚。更多有关TMT的新闻,可以阅读:http://www.ctmt.org/

夏威夷的巨型望远镜:要继续,就得有牺牲!

四分之一必须离开!在停止了两个月之后,夏威夷的巨型30米望远镜(Thirty Meter Telescope,TMT)重新回归到建设进程——但要牺牲其他望远镜。

由于夏威夷当地居民的抗议声越来越大,早在四月望远镜的建设工作就被迫暂停。与该望远镜相比,目前世界上所有的望远镜都相形见绌——它让能够让天文学家们凝视可见的宇宙的边缘。它位于许多夏威夷人认为是“神圣之地”的死火山莫纳克亚山,因此被夏威夷人认为是一种侮辱——尤其是在山顶已经有十多个望远镜了。

点击阅读全文...

15 Feb

积分估计的极值原理——变分原理的初级版本

如果一直关注科学空间的朋友会发现,笔者一直对极值原理有偏爱。比如,之前曾经写过一系列《自然极值》的文章,介绍一些极值问题和变分法;在物理学中,笔者偏爱最小作用量原理的形式;在数据挖掘中,笔者也因此对基于最大熵原理的最大熵模型有浓厚的兴趣;最近,在做《量子力学与路径积分》的习题中,笔者也对第十一章所说的变分原理产生了很大的兴趣。

对于一样新东西,笔者的学习方法是以一个尽可能简单的例子搞清楚它的原理和思想,然后再逐步复杂化,这样子我就不至于迷失了。对于变分原理,它是估算路径积分的一个很强大的方法,路径积分是泛函积分,或者说,无穷维积分,那么很自然想到,对于有限维的积分估计,比如最简单的一维积分,有没有类似的估算原理呢?事实上是有的,它并不复杂,弄懂它有助于了解变分原理的核心思想。很遗憾,我并没有找到已有的资料描述这个简化版的原理,可能跟我找的资料比较少有关。

从高斯型积分出发

变分原理本质上是Jensen不等式的应用。我们从下述积分出发
$$\begin{equation}\label{jifen}I(\epsilon)=\int_{-\infty}^{\infty}e^{-x^2-\epsilon x^4}dx\end{equation}$$

点击阅读全文...

18 May

调侃:万有引力与爱因斯坦的理论

我不是研究引力的,也没有很好地学习过引力。在理论物理方面,我学习经典力学和量子力学比学习广义相对论要多得多。因此,本来我是不应该谈引力的,以免误人子弟。不过,在一次坐车的途中,司机的刹车和加速让我联想到了一些跟引力有关的东西,自我感觉比较有趣,所以发给大家分享一下,也请大家指正。

等效原理

坐汽车

坐汽车

引力,准确来说应该是“万有引力”。所谓“万有”,有两个含义:1、所有物体都能够产生引力;2、所有物体都被引力影响。一个力居然是“万有”的,这让爱因斯坦感觉到非常奇怪,这也是四种基本力之中,引力跟其他力区别最明显的地方。相比之下,电磁相互作用力就只能存在于有“电”的地方,弱相互作用只存在于费米子,等等。

除了引力之外,我们平时还遇到过什么“万有”的力吗?貌似没有。但是我们想象一下,当你坐在一辆长途大巴匀速前进时,突然司机来了一个急刹车,在刹车的那一瞬间,所有人都往前倾了,不仅如此,可能你的行李箱、你的随身物品都往前移的,事实上,车上所有东西都受到了一个往前的力!对于那辆车上的人和物来说,刹车的那一瞬间,就存在着一个“万有”的力!

点击阅读全文...

9 Jun

路径积分系列:5.例子和综述

路径积分方法为解决某些随机问题带来了新视角.

一个例子:股票价格模型

考虑有风险资产(如股票),在$t$时刻其价格为$S_t$,考虑的时间区间为$[0,T]$,0表示初始时间,$T$表示为到期日. $S_t$看作是随时间变化的连续时间变量,并服从下列随机微分方程:
$$dS_t^0=rS_t^0 dt;\quad dS_t=S_t(\mu dt+\sigma dW_t).\tag{70}$$
其中,$\mu$和$\sigma$是两个常量,$W_t$是一个标准布朗运动.

关于$S_t$的方程是一个随机微分方程,一般解决思路是通过随机微积分. 随机微积分有别于一般的微积分的地方在于,随机微积分在做一阶展开的时候,不能忽略$dS_t^2$项,因为$dW_t^2=dt$. 比如,设$S_t=e^{x_t}$,则$x_t=\ln S_t$
$$\begin{aligned}dx_t=&\ln(S_t+dS_t)-\ln S_t=\frac{dS_t}{S_t}-\frac{dS_t^2}{2S_t^2}\\
=&\frac{S_t(\mu dt+\sigma dW_t)}{S_t}-\frac{[S_t(\mu dt+\sigma dW_t)]^2}{2S_t^2}\\
=&\mu dt+\sigma dW_t-\frac{1}{2}\sigma^2 dW_t^2\quad(\text{其余项均低于}dt\text{阶})\\
=&\left(\mu-\frac{1}{2}\sigma^2\right) dt+\sigma dW_t\end{aligned}
,\tag{71}$$

点击阅读全文...

2 Nov

【理解黎曼几何】8. 处处皆几何 (力学几何化)

黎曼几何在广义相对论中的体现和应用,虽然不能说家喻户晓,但想必大部分读者都有所听闻。一谈到黎曼几何在物理学中的应用,估计大家的第一反应就是广义相对论。常见的观点是,广义相对论的发现大大推动了黎曼几何的发展。诚然,这是事实,然而,大多数人不知道的事,哪怕经典的牛顿力学中,也有黎曼几何的身影。

本文要谈及的内容,就是如何将力学几何化,从而使用黎曼几何的概念来描述它们。整个过程事实上是提供了一种框架,它可以将不少其他领域的理论纳入到黎曼几何体系中。

黎曼几何的出发点就是黎曼度量,通过黎曼度量可以通过变分得到测地线。从这个意义上来看,黎曼度量提供了一个变分原理。那反过来,一个变分原理,能不能提供一个黎曼度量呢?众所周知,不少学科的基础原理都可以归结为一个极值原理,而有了极值原理就不难导出变分原理(泛函极值),如物理中就有最小作用量原理、最小势能原理,概率论中有最大熵原理,等等。如果有一个将变分原理导出黎曼度量的方法,那么就可以用几何的方式来描述它。幸运的是,对于二次型的变分原理,是可以做到的。

点击阅读全文...

18 Oct

【理解黎曼几何】5. 黎曼曲率

现在我们来关注黎曼曲率。总的来说,黎曼曲率提供了一种方案,让身处空间内部的人也能计算自身所处空间的弯曲程度。俗话说,“不识庐山真面目,只缘身在此山中”,还有“当局者迷,旁观者清”,等等,因此,能够身处空间之中而发现空间中的弯曲与否,是一件很了不起的事情,就好像我们已经超越了我们现有的空间,到了更高维的空间去“居高临下”那样。真可谓“心有多远,路就有多远,世界就有多远”。

如果站在更高维空间的角度看,就容易发现空间的弯曲。比如弯曲空间中有一条测地线,从更高维的空间看,它就是一条曲线,可以计算曲率等,但是在原来的空间看,它就是直的,测地线就是直线概念的一般化,因此不可能通过这种途径发现空间的弯曲性,必须有一些迂回的途径。可能一下子不容易想到,但是各种途径都殊途同归后,就感觉它是显然的了。

怎么更好地导出黎曼曲率来,使得它能够明显地反映出弯曲空间跟平直空间的本质区别呢?为此笔者思考了很长时间,看了不少参考书(《引力与时空》、《场论》、《引力论》等),比较了几种导出黎曼曲率的方式,简要叙述如下。

点击阅读全文...

6 Nov

【外微分浅谈】5. 几何意义

对于前面所述的外微分,包括后面还略微涉及到的微分形式的积分,都是纯粹代数定义的内容,本身不具有任何的几何意义。但是,我们可以将某些公式或者定义,与一些几何内容对应起来,使我们更深刻地理解它,并且更灵活运用它。但是,它仅仅是一种对应,而且取决于我们的诠释。比如,我们说外微分公式
$$\int_{\partial D} Pdx+Qdy = \int_{D} \left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)dx\land dy \tag{32} $$
对应于格林公式
$$\int_{\partial D} Pdx+Qdy = \int_{D} \left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)dxdy \tag{33} $$
。这是没问题的,但它们并不等价,它们仅仅是形式上刚好一样。因为格林公式是描述闭合曲线的积分跟面积分的联系,而外微分的公式是一种纯粹的代数运算。因为你完全可以将$dx\land dy$对应于$-dxdy$而不是$dxdy$,这样就得到另外一种几何的对应。

更深刻的问题是:为什么恰好有这个对应?也就是说,为什么经过一些调整和诠释后,就能够得到与积分公式的对应?首先要明确的是外积与普通的数的乘积,除了反对称性之外,是没有任何区别的,因此不少性质得以保留;其次,还应该要回到反对称本身来考虑,矩阵的行列式代表着矩阵所对应的向量组张成的$n$维立体的体积,然而行列式是反对称的,这就意味着反对称运算跟体积、积分等有着先天的联系。当然,更细致的认识,笔者也还没做到。

此外,我们说寻求微分形式的几何意义,通常只是针对不超过3维的空间来讨论的,更高维的几何图像我们很难想象出来,尤其是高维的曲面积分,一般只是类比,但类比是否成立,有时还需要进一步商榷。因此,这种情况下,倒不如干脆点,说微分形式描述的东西就是几何,而不再去寻找所谓的几何意义了。也就是说,反过来,将微分形式和外微分作为公理式的第一性原理来定义几何。

甚至,你可以只将外微分当作是一种记忆各种微分、积分公式的有效途径,比如现在我要大家默写三维空间中的斯托克斯公式,大家估计会乱,因为不一定记得是哪个减哪个。但是在外微分框架下,可以很快地将它推导一遍。好比式$(11)$,如果非要寻求几何解释,那就是开普勒第二定律:单位时间内扫过的面积相等;然而没有几何解释,你依旧可以把方程解下去。

点击阅读全文...