折腾windows 8和ubuntu 12
By 苏剑林 | 2012-08-30 | 21844位读者 | 引用这是一篇用Windows 8完成的文章。
快开学了,华师2号就要报道了,所以就提前入手一台手提电脑,联想Z575AM-ASI,四千元的AMD,4核,64位机器。
我的台式机已经是六年前的产品了,联想的家悦系列,只有512MB内存。所以相比之下,这新机器配置还过得去吧,对于CPU,我个人还是倾向于AMD的,因为我的那台家悦台式也是AMD的CPU,所以对它很有好感。新兴的联想专卖店没有AMD手提,所以还得提前向他们预订。
Windows8
手提本身没有预装操作系统,专卖店很随手地为我装了一个win7,而且还只是ghost版本的,时不时会卡死,感觉很不好,刚好前些日子在网上开始发布Windows8了,所以就马上把Win7格掉,装上Windows8了。安装过程很顺利,由于还没有正式发布,所以还没有激活,这段时间纯粹体验中。等正式版发布了,再计划买一个正版光盘吧
《新理解矩阵4》:相似矩阵的那些事儿
By 苏剑林 | 2012-11-11 | 58730位读者 | 引用这篇文章估计是这个系列最后一篇了,也许以后会继续谈到线性代数,但是将会独立开来讲述。本文主要讲的是相似矩阵的一些事情,本文的观点很是粗糙,自己感觉都有点模糊,因此请读者细细阅读。在孟岩的文章里头,它对矩阵及其相似有了一个非常精彩的描述:
“矩阵是线性空间中的线性变换的一个描述。在一个线性空间中,只要我们选定一组基,那么对于任何一个线性变换,都能够用一个确定的矩阵来加以描述。”
同样的,对于一个线性变换,只要你选定一组基,那么就可以找到一个矩阵来描述这个线性变换。换一组基,就得到一个不同的矩阵。所有这些矩阵都是这同一个线性变换的描述,但又都不是线性变换本身。
矩阵化简二次型(无穷小近似处理抛物型)
By 苏剑林 | 2012-12-25 | 26036位读者 | 引用(阅读本文最好有一定的线性代数基础,至少对线性代数里边的基本概念有所了解。)
这学期已经接近尾声了,我们的《解析几何》已经讲到化简二次曲线了。可是,对于没有线性代数的其他同学们,直接用转轴和移轴这个计算公式来变换,那计算量会让我们很崩溃的;虽然那个“不变量”方法计算上有些简单,却总让人感到很诡异,总觉得不知从何而来,而且又要记一堆公式。事实上,如果有线性代数的基础,这些东西变得相当好理解的。我追求用统一的方法求解同一种问题,即用统一的方式处理所有的二次型,当然也希望计算量简单一点。
一般的模型
一般的二次型可以写成
$$x^T A x + 2 b^T x + c=0$$
其中$x,b$都是n维列向量(各元素为$x_i$和$b_i$),A是n阶方阵(各元素为$a_{ij}$),c是常数。在这里,我们只讨论n=2和n=3的情况。化简二次型的过程,可以归结为A矩阵的简化。
在天文爱好者眼中,黑洞是一个球体,其半径为$\frac{2GM}{c^2}$;这是广义相对论的施瓦兹黑洞的结果,也从经典力学推导推导出来,虽然用经典力学是错误的,但是对于多数的天文爱好者(包括笔者)来说,这是目前唯一的一种可行的理解方法(广义相对论那些复杂推导会让我们很崩溃的)。当然,事实上,黑洞不是一个球体,它只是一个密度很大的点。至于密度有多大,目前公认的说法是无穷大,但是严格的物理是不接受这个说法的,或者说,物理是不会接受任何无穷大的说法,所以现在积极发展量子引力理论来统一相对论和量子力学,不过这是另话了。$\frac{2GM}{c^2}$只不过是黑洞的视界,视界之内,我们就什么也不知道了。本文主要就从经典力学的角度探讨一下两个黑洞的合并过程中其视界的变化。读者将会发现,这些视界的形状相当有趣。
经典力学中的黑洞是这样定义的:天体表面的逃逸速度超过了光速,于是连光都无法逃脱,所以这个“洞”就很黑。也就是说,光子的总能量(引力势能与动能之和,经典力学意义下的)要为负,负数表示受到束缚。用数学公式来讲,就是:
$$\frac{1}{2}mc^2 - \frac{GM_1 m}{r_1}-\frac{GM_2 m}{r_2}-...-\frac{GM_n m}{r_n} \leq 0$$
关于“平衡态公理”的更正与思考
By 苏剑林 | 2013-02-03 | 20917位读者 | 引用在《自然极值》系列文章中,我引用了《数学方法论与解题研究》(张雄,李得虎编著)中提到的“平衡态公理”,并用它来解决了一些数学物理问题。平衡态公理讲的是系统的平衡状态总是在势能取极(小)值时取到,简单来讲就是自然界总向势能更低的方向发展,比如“水往低处流”。这在经典力学中本身是没有任何问题的,但在有些时候,我们在应用的时候可能会不自觉地将它想象成为“系统的平衡状态总是在总能量取极(小)值时取到”。然而,这却是不正确的。本文就是要探讨这个问题。
先来看看平衡态公理的来源。从最小作用量原理出发,考虑保守系统,每一个系统都应该对应着一个取极值的作用量S:
$$S=\int_{t_1}^{t_2} L(x,\dot{x})dt$$
高斯型积分的微扰展开(二)
By 苏剑林 | 2015-03-07 | 24304位读者 | 引用为什么第二篇姗姗来迟?
其实要写这系列之前,我已经构思好了接下来几篇的内容,本来想要自信地介绍自己想到的一些积分展开的技巧;而且摄动法我本身就比较熟悉,所以正常来说不会这么迟才有第二篇。然而,在我写完第一篇,准备写第二篇的期间,我看到了知乎上的这篇回复:
http://www.zhihu.com/question/24735673
这篇文章大大地拓展了我对级数的认识。里边谈及到了积分的展开是一个渐近级数。这让我犹豫了,怀疑这系列有没有价值,因为渐近级数意味着不管怎样的展开技巧,得到的级数收敛半径都是0。
后来再想想,就算是渐近级数,也有改进的空间,有加速收敛的方法,所以我想我这几篇文章,应该还有一点点意义吧,还可以顺便介绍一下渐近级数和奇点的相关理论。嗯,就这么办吧。
费曼积分法(7):欧拉数学的综合
By 苏剑林 | 2013-03-27 | 37835位读者 | 引用传说费曼讲课很精彩,但他是上个世纪的人,所以也就没有多少视频保留下来。但是网上还是存有一些,有兴趣的读者可以收藏。
费曼讲座——光、电子、路径积分(无字幕)
http://v.youku.com/v_show/id_XNjAyMzU4ODg=.html
http://v.youku.com/v_show/id_XNjAyMzQ4NzI=.html
http://v.youku.com/v_show/id_XNTQzMTEyNTA4.html
最近评论